Dealing with Files

Thomas Schwarz, SJ



Files

* Files
e Basic container of data in modern computing system

 Organized into a hierarchy of directories



Files

/etc/Apache C/etc/master.passwd ) . . .

/Users/technician

A,-""‘ \‘.‘
I//@tschwarz/ Doc@ / Users/tschwarz/Appl@

y

/Users/tschwarz/ Documents/PythW

A\
N\
N
A

a

/Users/tschwarz/Documents/hangman.py )

A small subset of directories .



Files iIn Python

* Files accessed in
e text mode
 Contents interpreted according to encoding
* binary mode

e Contents not interpreted



Files iIn Python

* Python interacts by files through
* reading
e writing / appending
* both



Files iIn Python

* Files need to be opened
* File given by name
* Relative path: Navigation from directory of the file

 Absolute path: Navigation from the root of the file
system



Files iIn Python

 File Name Examples:

e Absolute path on a Mac / Unix

/Users/tjschwarzsj/Google Drive/AATeaching/Python/Programs/pr.py

e Relate path on a Mac / Unix

o“ /% means move up on directory

pr.py

../Slides/week7.key



Files iIn Python

 Windows uses backward slashes to separate directories
in a file name

e Sometimes need to be escaped: \\
 Absolute paths need to include drive name:

e c:\\users\\tschwarz\\My Documents\\Teaching\
\temp.py

® We will typically read and create files in the same
directory as the python program is located



Files iIn Python

» Before files are used, program needs to open them
o After they are being used, program should close them
e Will automatically closed when program terminates

* |ong-running programs could hog resources



Opening Files in Python

* File objects have normal variable names
inFi1le = open(“data.txt”,”"w”)

e opens a file “data.txt” in write mode

e open takes:
e file name — absolute / relative path
e mode — r (read), w (write), a (appending)

e mode — b (binary), “” or t (text mode)



Closing Files in Python

* We close file by invoking close

® infFile.close()



Why we need to close files

* Files are automatically closed when the program
terminates

* When one application has opened a file for writing it
acquires a write lock on the file and no other application
can access the file.

* When one application has opened a file for reading, it
acquires a read lock on the file and no other application
can write to it.

* |f you write programs that last more than a few seconds,
you do not want to hog files when you do not need them.



With-clauses

* Python 3 allows us to open and close files in a single
block (context)

with open ("twoft8.11.txt") as inFile, open("twoftres8.11.txt",
"w") as outFile:

#Here you work with the file



Processing Files in Python

 We write strings to the file
with open(‘somefile.txt’,’'wt’) as f:
f.write(str (500)+"”\n")
 Redirect print

with open(‘somefile.txt’,’'wt’) as f:

print (500, file = f)



Processing Files in Python

 Reading files
* The read-instruction
string = i1nFile.read(10)
reads ten bytes of the file

e Read the entire file

with open('somefile.txt', 'rt') as f:

data = f.read()



Processing Files in Python

 Reading files
* Read line by line
with open('somefile.txt', 'rt') as f:
for line 1in f:

#process line



More String Processing

e o process read lines:

e strip () anditsvariants 1strip (), rstrip/()

e Remove white spaces (default) or list of characters
from the beginning & end of the string

e split () creates a list of words separated by white
space (default)

"This 1s a sentence with many words 1n
1t.".split ()

['This', 'i1s', 'a', 'sentence', 'with',
'many', 'words', 'in', 'it.']



Examples

* Finding all words over 13 letters long in “Alice In
Wonderland”

* Download from Project Gutenberg

import string

with open("alice.txt", "rt", encoding = "utf-8") as f:
for line 1n f:
for word in line.split():
1f len (word) > 13:
print (word)




Examples

e Count the number of words and of lines in “Alice in
Wonderland”

 Read the file line by line

* The number of words in a line is the length of
line.split.

import string

line counter = 0
word counter = 0
with open("alice.txt", "rt", encoding = "utf-8") as f:

for line 1in f:
line counter += 1
word counter += len(line.split())
print (line counter, word counter)




Problems with Line Endings

ASCII code was developed when computers wrote to teleprinters.
* A new line consisted of a carriage return followed or preceded by a line-feed.
 UNIX and windows choose to different encodings
* Unix has just the newline character “\n”
* Windows has the carriage return: “\r\n”
* By default, Python operates in “universal newline mode”
* All common newline combinations are understood
* Python writes new lines with the system default

* You could disable this mechanism by opening a file with the universal newline
mode disabled by saying:

® open(“fililename.txt”, newline="'")



Encodings

* |Information technology has developed a large number of
ways of storing particular data

* Here is some background

] 1

wies - Boot Sect NTPLpll

e I Sesth  Nevgetwn Vi e ptitrns  Nndow el
A - RBARD A2 XA * 9
r Y
1 Socter )

FPiien

Using a forensics tool (Winhex) 1n order
to reveal the bytes actually stored



Encodings

e TJeleprinters
e Used to send printed messages
 Can be done through a single line

e Use timing to synchronize up and down values




Encodings

e Serial connection:
e \oltage level during an interval indicates a bit

e Digital means that changes in voltage level can be
tolerated without information loss

voltage
A

fTo0oo017T170171T71T7T 0000170707100

time



Encodings

e Parallel Connection
e (Can send more than one bit at a time

e Sometimes, one line sends a timing signal



Encodings

e Sending
e 1000
e 0100
e 1100
e 0100

e Small errors in timing and
voltage are repaired
automatically

nonnonnnonmg

time

717010101010 17T071T01T0101O01

voltage line 0

N0 1 A0

tT0o100011717001 7170117001711

time

voltage line 1

|1 000 nc

| time
o1 1171000701770 170171001°01

voltage line 2

I

time

O0071T0000171T000001T0O00O0T1O

voltage line 3

|

I ?/me
oooot1r11117100000117 11100




Encodings

* Need a code to transmit letters and control signals
e Emile Baudot’s code 1870
5 bit code

* Machine had 5 keys, two for the left and three for the
right hand

 Encodes capital letters plus NULL and DEL

 Operators had to keep a rhythm to be understood on
the other side



Encodings

* Many successors to Baudot’s code
e Murray’s code (1901) for keyboard

* Introduced control characters such as Carriage
Return (CR) and Line Feed (LF)

e Used by Western Union until 1950



Encodings

e Computers and punch cards
* Needed an encoding for strings
e EBCDIC — 1963 for punch cards by IBM
 8b code

W i e o i«;ir:-‘.',;‘
6 e it




Encodings

* ASCII — American Standard Code for Information Interchange — 1963
* 8b code

* Developed by American Standard Association, which became
American National Standards Institute (ANSI)

* 32 control characters

* 91 alphanumerical and symbol characters

* Used only 7b to encode them to allow local variants
* Extended ASCI!

* Uses full 8b

* Chooses letters for Western languages



Encodings

e Unicode - 1991

* “Universal code” capable of implementing text in all
relevant languages

e 32b-code

* For compression, uses “language planes”



Encodings

e UTF-7 — 1998
* /b-code
* |Invented to send email more efficiently
e Compatible with basic ASCII

* Not used because of awkwardness in translating 7b
pieces in 8b computer architecture



Encodings

e UTF-8 — Unicode
e Code that uses
* 8b for the first 128 characters (basically ASCII)
* 16b for the next 1920 characters

e Latin alphabets, Cyrillic, Coptic, Armenian, Hebrew, Arabic,
Syriac, Thaana, N’Ko

o 24b for
* Chinese, Japanese, Koreans
e 32b for

* Everything else



Encodings

* Numbers
 There is a variety of ways of storing numbers (integers)
* All based on the binary format

e For floating point numbers, the exact format has a large
influence on the accuracy of calculations

e All computers use the IEEE standard

IEEE 754 Standard for Floating Point

+ Single precision format

g |E:Biased |Z

Exponent | Significand 23 bits
8 bits

30

sign

Bit index

on format
g |E:Biased |Z
4 | EXponent | Significand 20 bits
~ |11 bits

Bit index

Significand continued 32 bits




Python and Encodings

* Python “understands” several hundred encodings
* Most important
e ascii (corresponds to the 7-bit ASCII standard)
e utf-8 (usually your best bet for data from the Web)
e |atin-1

e straight-forward interpretation of the 8-bit extended
ASCI!

e never throws a “cannot decode” error

* No guarantee that it read things the right way



Python and Encodings

If Python tries to read a file and cannot decode, it throws
a decoding exception and terminates execution

We will learn about exceptions and how to handle them
soon.

For the time being: Write code that tells you where the
problem is (e.g. by using line-numbers) and then fix the
iInput.

Usually, the presence of decoding errors means that you
read the file in the wrong encoding



Using the os-module

 With the os-module, you can obtain greater access to the
file system

* Here is code to get the files in a directory

import os

def list files(dir name) :
files = os.listdir (dir name)
for my file 1n files:
print (my file,
os.path.getsize (dir name+"/"+my file))

list files (“Example")



Using the os-module

import os

Get a list of file names in the directory

def list files(dir namc
files = os.listda
for my file 1in files:
print (my file,
os.path.getsize (dir name+"/"+my file))

list files (“Example")



Use the os-module

import os

def list files(dir name):
files = os.listdir (dir name)
for my file 1in files:
print (my file,
os.path.getsize (dir name+"/"+my file))

list files (“Example")

Creating the path name

to the file




Use the os-module

import os

def list files(dir name):
files = os.listdir (dir name)
for my file 1in files:
print (my file,
os.path.getsize (dir name+"/"+my file))

list files (“Example")

Gives the size of the file

in bytes




Use the os-module

import os

def list files(dir name):
files = os.listdir (dir name)
for my file 1in files:
print (my file,
os.path.getsize (dir name+"/"+my file))

list files (“Exam "




Use the os-module

e Qutput:

e Note the Mac-trash file

RESTART: /Users/thomasschwa
lel4/generator.py

.DS_Store 6148

resultsl.csv 384
results@.csv 528
resultsZ2.csv 432
results3.csv 368
results4.csv 464




Use the os-module

e Using the listing capability of the os-module, we can
process all files in a directory

 Jo avoid surprises, we best check the extension

e Assume a function process a file

e QOur function opens a comma-separated (.csv) file

e (Calculates the average of the ratios of the second
over the first entries



Use the os-mo

ule

1.290, 12.495
2.295, 11.706
3.063, 9.083
. . 4.058, 4.112
* The process_a_file takes the file-name
—_ — 1.997, 8.833 qfﬁ
2..281, 10.032 2
0.929, 9.3731i5, 9.733 §20
o C I I 't th t- 1.858, 14.439i5, 15.820 Z;;
r r 3.022, 21.861 i1, 20.939
alculates the average ratio 3022, 2186111, 20.939 5,
1.147, 1.093% 10.838 (8, 33.335 $°0
1.997, 8.833i 0.280i2, 37.546 F41
2.781, 10.032 i 37.029 i4, 47.130 ¢/
4.225, 9.733 1 37.459 {7, 50.559 232
5.455, 15.820 i 27.295 i3, 62.268 108
6.151, 20.939 | 34.994 i5, 68.175 93
6.573, 26.547 i 37.458 i6, 76.877 +18
8.058, 33.335: 66.393 17, 84.574 220
9.132, 37.546 i 62.255 i4, 93.389 p°0
10.474, 47.130} 84.116 i6,103.726 2/8
11.207.0..50.559.5.87.145 i7,111.623 217
. . 1933 15,119.797 }2?
def process a file(file name): o6y 10149 906
: : : : .947 i9,154.047
with open(file name, "r") as infile: 509 §0, 169502
— .398 i6,178.782
_ .806 i0,190.953
suma 0
, 716 i3,214.514
nr llnes — O .198 i6,232.827
— .358 i0,245.687
: : . : 137 i0,256.452
for line 1n infile: 77270, 849
. srrwd3, 288.109
nr llneS+:1 33.288,303.786

array = line.split(',")

return suma/nr lines

suma+= float (array([l])/float (array[0])




Use the os-module

* Jo process the directory
e Get the file names using os
* For each file name:
e Check whether the file name ends with .csv
e (Call the process_a_file function

e Print out the result



Use of the os-module

def process files(dir name):

files = os.listdir(dir name)
for my file in files:
1f my file.endswith('.csv'):

print (my file, process a file(
“Example/{}”.format (my file)))

Using format to create the
file name




Use of the os-module

lel4/generator.py

>>> process_files( 'Example’)
resultsl.csv 5.2819632072675295
results@.csv 5.920382285263983
resultsZ2.csv 5.75068633738946606
results3.csv 4.801235259621119
results4.csv 6.409464135625922




Encodings

* Whenever you see strings:
 Think about encoding and decoding
e Example: the &
e '2' .encode('utf-8"'") .decode('latin-1")
* gives
o "Ak'

 Mixing encodings often creates chaos



Encodings

 Python is very good at guessing encodings
* Do not guess encodings

e E.g.: Processing html: read the http header:

® Content-Type: text/html; charset=utf-8

* |f you need to guess, there is a module for it:

® chardet.detect (some bytes)



Encodings

* Thinking about encoding and decoding string allows easy
internationalization



Bytearrays

 On (rare) occasions, you might want to work with bytes
directly

 Read the file in binary mode

 Bytearray allows you to manipulate directly binary data

 bytes have range 0-255

® content = bytearray(infile.read())



Exceptions



Exceptions

e There are two approaches to living life as a religious:
e Before you do anything, you ask for permission
e Strengthens humility and denial of self
e Do something and then ask for pardon

e Strengthens your Ego too much, but makes it easier on the superior

e Similarly: There are two approaches to the risks of live:
e Make sure you are prepared for anything

e Just live your life and deal with the consequences of your errors.

e In programming, Python tends to fall squarely into the second category

e But it makes more sense than in real life



Exceptions

® RAISING AN EXCEPTION interrupts the flow of the
program

® HANDLING AN EXCEPTION puts the program flow back
on track or deals with an error situation

® Such as out of memory, file cannot be found, CPU
illegal instruction error, division by zero, overflow, ...



Python Philosophy

Socrates scores, got a beautiful c:os's. fro‘m' )
Archimedes. The Germans are disputing it.

e -
(¢ 6
. ¢ .
v
AY ‘ $oias
Y5 4 Pr Y
<
e o I
' B {
Ly )
» aada
ﬂ%

Kant, via the categorical lmponbva <
is holding that, ontologically, it exists u ' AL~
only in the imagination. - And Marx is claiming it was offside.

Philosopher’s Football

¢ Handle the common case.

 And deal with the exceptions.



C, Java, C++ Philosophy

e (C: check before you assume

e Java, C++: Use exceptions to handle bad situations

* Python: Use exceptions for the not so ordinary



Python

e |f an instruction or block of instruction can cause an error,
put it in a try block.

try:

int (string)

Converts the string into
an integer

Notice that we are not using the result of the conversion,
we just attempt the conversion



Python Exceptions

* Then afterwards, handle the exception.

* You should, but are not required to specify the possible
offending exception

try:
int (string)
If the conversion fails, a except ValuekError:

ValueError is thrown . .
print (“"Conversion error”)

This block handles the
exception



Python Exceptions

e How do you find which error is thrown:;
* You can cause the error and see what type of error it is

* You can look it up

>>> 5/0
Traceback (most recent call last):
File "<pyshell#5>", line 1, 1n <module>
5/0
ZeroDivisionError: division by zero

Division by zero creates a
ZeroDivisionError



Python Exceptions

e Putting things together: Testing whether a string
represents an integer

def 1s 1nt(string) :
try:
Try out the conversion 1nt (string)
return True
except:

return False



Python Exceptions

e Putting things together: Testing whether a string
represents an integer

def 1s 1nt(string) :
try:
Try out the conversion 1nt (string)
return True
except:

return False

It worked:
We return True



Python Exceptions

e Putting things together: Testing whether a string
represents an integer

def 1s 1nt(string) :

Try out the conversion

try:
int (string)
return True
except:
return False

It did NOT work:
An exception is thrown
We return FALSE



Python Exceptions

 As you can see from this example, the moment an
exception is thrown, we jump to the exception handler.



Python Exceptions

e When to use exceptions and when to use if

e Recall: Using if is defensive programming

e Recall: Using exceptions amounts to the same degree
of safety, but is offensive

e Rule of thumb:

e |f exceptions are raised infrequently, then use them



Python Exceptions

* Let’s make some timing experiments

* Define two functions that square all elements in a list, if the
elements are integers.

def square list(lista):
result = []
for element 1n lista:
1f element.isdigit() :
result.append(int (element) **2)

def square list2(lista):
result = []
for element 1n lista:
try:
result.append(int (element) **2)
except:
pPass




Python Exceptions

* The pass instruction:

* When Python expects a statement, but we don’t have
one:

e Just use pass

e The No-Operation instruction



Python Exceptions

e Recall how to use the time-module to obtain the CPU
(wall-clock) time

e \We use this to measure execution time

* First a list that only contains integers

def timeit (function, trials):
lista = [str(1) for 1 in range(1000000) ]
count = 0
for 1n range(trials):
start = time.time ()
lista? = function(lista)
count += time.time()-start
return count/trials



Python Exceptions

 Result: Exceptions are somewhat faster

>>> timeit(square_list, 5)
0.6882429599761963

>>> timeit(square_list2, 5)
0.61?144681930542



Python Exceptions

 What if none of the list elements are integers:

def timeit (function, trials):
lista = ["a"+str (1) for 1 1in range(1000000) ]
count = 0
for 1n range(trials):
start = time.time ()
lista? = function(lista)
count += time.time ()-start

return count/trials

>>> timeit(square_list, 5)
0.07187228202819824 Exceptions are
>>> timeit(square_list2, 5) MUCH SIOWeE
1.2984710693359376




Python Exceptions

e \What about if the letter is at the end

def timeit (function, trials):
lista = [str(1)+"a" for 1 1in range(1000000) ]
count = 0
for 1n range(trials):
start = time.time ()
lista? = function(lista)
count += time.time()-start

return count/trials

Exceptions are

>>> timeit(square_list, 5)
0.09337239265441895

>>> timeit(square_list2, 5)
1.3271790504455567

still much slower




Self Test

 Define a function that calculates the geometric mean of
two numbers.

e Use an exception to deal with a ValueError, arisen by
taking the square-root of a negative number

e Here is the if-version. We return None if there is no
mean.

def geo(x, y):
1f x*y > 0:
return math.sqgrt (x*y)
return None



Self Test Solution

def geoe(x,Vy) :
try:
return math.sqgrt (x*vy)
except ValueError:
return None



Multiple Exceptions

* We can write an exception handler that handles all the
exceptions

* This is discouraged since there are just too many
exceptions that can occur

* such as out-of-memory, system-error, keyboard-
interrupt ...

* |n this case, the except clause specifies no exception

try:

accum += 1/n No exception specified
except: Handler handles
print (“something bad happened everything




Multiple Exceptions

e Normally, you want to specify which exceptions you are
handling

* You can specify several exception handles by repeating the
exception clause

e Or you can handle a list of exceptions
The parentheses are

def test () : necessary
try:
f = open("none.txt")
block = f.read(2506)
except IOError:
print ("something happened w'ien reading the file")
except EOFError:
print ("ran out of file")
except (KeyboardInterrupt, ValueError):
print ("something strange happened")



Cleaning Up

e Sometimes you need to make sure that failure-prone
code cleans up

e Usethe finally clause

e (Guaranteed to be executed
e Even with return statements

* Even when exceptions are raised



Example for finally clause

* |f we open a file without the if-clause, we are morally
obliged to close it

e |et’s say, if you have a long-running process that only
needs a file for a little time, you should not hog the file
and prevent others from accessing it.



Example for :

def harmonic (filename) :
Assumes that the elements in
We return the harmonic mean

mwiiw

count = 0
accumulator = 0
try:
infile = open(filename,

for line in infile:
for words 1in line.sp
accumulator += 1
count += 1
return count/accumulator
except ZeroDivisionError:
print ("saw a zero")
return 1000000000
except ValueError:
print ("saw a non-integer
return O
finally:
print ("I am done and clo
infile.close()

"inally clause

the file are numbers.
of the numbers.

Return in the try block

encoding="utf-8")

it () :

. _ Return in the handler
/int (we—ds)

But finally is
guaranteed to run
before any of the

1Al )
returns

sing thé file")



Raising exceptions

* You can also raise your own exception

* You can even define your own exceptions when you
have understood classes

e Justsay: raise ValueError

 or whatever the exception is that you want to raise.



Self Test

* Recall that the finally clause is always executed.

 What is the output of the following code

def raising() :
try:
raise ValueError
except ValueError:
return 0
finally:
return 1



Answer

e The functions returns 1

* The exception is raised and control passes to the
exception handler

» Before the exception handler can return, the finally
clause is executed

e And that one returns 1



Multiple Exceptions

e |tis common that Python code throws multiple
exceptions

e (Can list different exceptions using a tuple and handle
them all

try:
client obj.get url (url)

except (URLError, ValueError, SocketTimeout) :
client obj.remove url (url)

* Or write different exception handlers
try:
client obj.get url (url)
except (URLError, ValueError):
client obj.remove url (url)
except SocketTimeout:
client obj.handle url timeout (url)



Handles to Exceptions

o EXceptions are classes that have methods

e Jo gain access use the as keyword

try:
f = open(filename)
except OSError as e:
1f e.errno == errno.ENOENT:
print ('file not found')
elif e.errno == errno.EACCES:
print ('permission denied')
else:
print ('unexpected error')



Multiple Exceptions

* More than one exception can be triggered

* The first matching exception handler will handle, even if
a more specific exception handler is available

try:

f = open(a missing file)
except OSError:

print ('i1t failed')
except FileNotFoundError:

print ('File not found')

e prints out 'it failed'



Multiple Exceptions

 EXxceptions are in a hierarchy

try:
except Exception as e:

print (e)

e catches all exceptions except SystemExit,
KeyboardInterrupt, GeneratorExit

e |f you want to catch those, change Exception to
BaseException



Creating Custom
Exceptions

e To create a new exception, just define a class that
derives from Exception

class NetworkError (Exception) :
pPass

class TimeoutError (NetworkError) :
pPass



Creating Custom
Exceptions

e |f your custom exception overrides the constructor

* Make sure you call the exception class constructor

class CustomError (Exception) :

def 1nit (self, message, status):
self.message = message
self.status = status

 Parts of Python and libraries except all exceptions to
have an .args attribute, that will be provided by calling
the super



Chaining Exceptions

* Raise an exception in response to catching a different
exception, but include information about both exceptions
in the traceback

def example() :
try:
int ("N/A")
except ValueError as e:
ralse RuntimeError ('A parsing error occured') from e



Assertions

To prevent error conditions, can use assertions

e E.g.: your code only runs on a linux machine

import sys

assert ('linux' 1n sys.platform),
'this code runs on linus only')

e |f the condition is violated, throws an AssertionError

 But the assert statements are optimized away when



Else Statement

* Else block after a try block is executed only if no
exception was raised [t J
ry:

____________________________

____________________________

____________________________

____________________________



Else Statement

 Exceptions in the else block would not be caught by the
current try block

for arg 1n sys.argv[1l:]:

try:
f = open(arg, 'r'")

except OSError:
print ('cannot open', arqg)

else:
print (arg, 'has', len(f.readlines()), 'lines')
f.close ()



Exercises

 The following code is potentially buggy.

info = [{'score': 3, 'confidence': 2},
{'score': -1, 'confidence': 4},
{'score': 1, 'confidence': 4},
{'confidence': 0}]

def get total score(info):
total = 0
for item 1n 1info:
total += 1tem]'score']
return total

get total score(info)



Solutions

def get total score(info):
total = 0
number of i1tems = 0
for 1tem 1n 1info:
try:
total += 1tem]['score']
except KeyError:
pass
else:
number of i1tems += 1
return total/number of items

print (get total score(info))



Exercises

* The following code is potentially buggy.

import os

def check (directory) :
for file name 1n os.listdir(directory):
with open(file name) as infile:
nr = len(infile.readlines{())

print (file name, nr)



Solutions

import os

def check (directory) :
for file name 1n os.listdir(directory):
try:
with open(file name) as infile:
nr = len(infile.readlines())
print (file name, nr)
except UnicodeDecodeError:
print ('unicode decode error in', file name)
except IsADirectoryError:
print (f'{file name} 1s a directory')



Use Case



Use Case

Given experimental data in several files, generate
statistics: mean, median, standard deviation, min, max

First, need to read and understand the files

fac_xor_100k.rtf Jul 9, 2021 at 6:37 PM 5 KB RTF Document
® fac_xor_500k.rtf Jul 9, 2021 at 6:37 PM 5 KB RTF Document
mik.rtf Jul 9, 2021 at 7:33 PM 19 KB RTF Document
mim.rtf Jul 9, 2021 at 7:33 PM 24 KB RTF Document
m2m.rtf Jul 9, 2021 at 7:33 PM 10 KB RTF Document
m3m.rtf Jul 9, 2021 at 7:33 PM 10 KB RTF Document
mam.rtf Jul 9, 2021 at 7:33 PM 10 KB RTF Document
mb5m.rtf Yesterday at 2:41 PM 10 KB RTF Document
meém.rtf Jul 9, 2021 at 7:33 PM 10 KB RTF Document
m7m.rtf Yesterday at 2:40 PM 10 KB RTF Document
m8m.rtf Yesterday at 2:39 PM 10 KB RTF Document
mom.rtf Yesterday at 2:39 PM 10 KB RTF Document
m10k.rtf Jul 9, 2021 at 7:33 PM 21 KB RTF Document
m10m.rtf Yesterday at 2:38 PM 10 KB RTF Document
m100.rtf Jul 9, 2021 at 7:33 PM 16 KB RTF Document
m100k.rtf Jul 9, 2021 at 7:33 PM 23 KB RTF Document
m500k.rtf Jul 9, 2021 at 7:33 PM 23 KB RTF Document
new_mac_1k.txt Today at 11:57 AM 2 KB Plain Text
new_mac_1m.txt Today at 11:57 AM 2 KB Plain Text
new_mac_2m.txt Today at 11:57 AM 2 KB Plain Text
new_mac_3m.txt Today at 11:57 AM 2 KB Plain Text



Understanding the File

e \We want to extract data from the rtf files
* Which Is a special format with some metadata

e So, we open up a file and read its contents:

Python 3.9.1 (v3.9.1:1e5d33e9b9, Dec 7 2020, 12:10:52)

[Clang 6.0 (clang-600.0.57)] on darwin

Type "help", "copyright", "credits" or "license()" for more information.
>>>

W j_ t h Op e n ( ' m 4 m ° r t f ' ) a S j_ n f j_ :l_ e : = RESTART: /Users/thomasschwarz/Google Drive/AAAResearch/XOR/python/Results/exam

ple.py
' ' ' ' . {\rtfl\ansi\ansicpg1252\cocoartf2580
f O r l 1 n e 1 n 1 n f 1 l e . \cocoatextscaling@\cocoaplatforme{\fonttbl\f@\fnil\fcharset@ Menlo-Bold;}
{\colortbl;\red255\green255\blue255; \redd\greend\blued; \red255\green255\blue255;
] ] ] }

p r l n t ( l l n e ° S t r l p ( ) ) {\*x\expandedcolortbl;;\csgenericrgb\c@\c0\c0;\csgenericrgb\c100000\c100000\c1000
00;}
\paperwll900\paperh16840\margll440\margrls40\viewwl1520\viewh8400\viewkind®
\deftab543
\pard\tx543\pardeftab543\pardirnatural\partightenfactor®

\fe\b\fs22 \cf2 \ch3 4000000\

Xor: 49345466 12.3364  base: 55607792 13.9019
xor: 49148572 12.2871 base: 54566308 13.6416
X0or: 49196259 12.2991 base: 55123832 13.781

xor: 48912397 12.2281 base: 54718196 13.6795
Xor: 49537206 12.3843 base: 54457012 13.6143
Xor: 49586577 12.3966 base: 54948304 13.7371
Xor: 49545169 12.3863 base: 55384275 13.8461
Xxor: 49583695 12.3959 base: 55145634 13.7864
Xor: 49570100 12.3925 base: 54998475 13.7496
xor: 49518140 12.3795 base: 54730946 13.6827
Xor: 49617350 12.4043 base: 54859949 13.715

xor: 48713802 12.1785 base: 55164290 13.7911
Xor: 48164164 12.041 base: 57183437 14.2959
Xor: 47788420 11.9471 base: 57045043 14.2613

B i i



Understanding the File

e First thing: 'rtf' is good because we do not need to
struggle with encoding

e Second: We want to extract the data from the second and
fifth column and get statistics about them

 Third: The data is organized into files and the file name
gives the parameter. The parameter also appear in the
nineth line.

with open('mdm.rtf') as infile:
for 1n range(9):
line = infile.readline ()

1if '4000000" in line:
print (line)



Checking the File

 To open up all the files, we use a for loop

* This gives us more control then using the os-interface
because files might be added to the directory

e Trick: Just put the part of the filename into a list that
changes



Checking the File

* We also want to ensure that the file name and the putative
parameter are the same.

* Write the parameters and the filenames into a list

* Then in a for, loop over the zip of the two lists



Checking the File

numbers = [100, 1000, 10000, 100000, 500000, 10**6, 2*10**0
3*10**6, 4*10**o,
5*10**6, 6*10**0, 7*10**6, 8*10**6, 9*10**0,
10*10**6]
for filename, number 1n zip(['100','1lk', '10k',
'100k', '500k', '"1Im', 'Z2m', '3m', '"4m', 'Sm',
'om', '/m', '8m', '9m', 'l10m'],numbers):
filename = 'm'+filename+'.rtf'
with open(filename) as infile:
for 1n range(9):
line = infile.readline ()
1f str (number) 1n line:
print (f'Processing {filename}.')
else:

print (f'Error in {filename}"')



e After the next line, there is data

XOr.
XOr.
XOr.:
X0Or.:
XO0r.:
XOr:

49345466
49148572
49196259
48912397
49537206
495865777

12
12
12
12
12
12.

. 3364
. 2871
L2991
. 2281
. 3843
3966

base:
base:
base:
base:
base:
base:

55607792
54500303
551238372
547181960
54457012
54943304

e Extract the second and the fifth column

e This uses split

for line 1n 1nfile:

contents

= line.strip ()

Extracting the Data

13.
13.
13.
13.
13.
13.

9019
0416
781 \
6795
6143
7371

.split ()



Extracting the Data

* The result is an array with substrings:

 'xor:', '/21', '"7.21', 'base:', '1188', '11.88",
 'xor:', '76l1', '7.061', 'base:', '1192', '11.92"',
 'xoxr:', '754', '7.54', 'base:', '1192', '11.92",
 'xor:', '705', '7.05', 'base:', '1008', '10.08",
 'xor:', '040', 'o06.4', 'base:', '1047', '10.47"',
 'xor:', 'e08', '0.08', 'base:', '1049', '10.49",
 'xor:', '658', 'e6.58', 'base:', '1049', '10.49",
 'xor:', '0679', '6.79', 'base:', '1049', '10.49"',

* You might notice the escaped back-slash at the end

"N\
"N\
"\
"\

"N\ ']

"N\
"N\
"N\




Extracting the Data

* We convert the substrings to ints and store them in an
array each

Xor, base = [], |[]

for line 1n 1infile:
contents = line.strip() .split ()
try:

xor.append (int (contents[1]))

base.append (int (contents[4]))
except:

print (line, 'is causing a problem')



Processing the Data

* Now we process these numbers
 We are given an array

e \We want to obtain min, max, mean, median, standard
deviation

e Some of this are built in functions



Processing the Data

e Can also use sum on an array

def process (numbers) :

mymlin = miln (numbers)
mymax = max (numbers)
mean = sum(numbers)/len (numbers)

e Standard Deviation is the average square of the difference
between value and mean

stddev = sum ([ (x-mean) **2 for x in numbers])/len (numbers)



Processing the Data

e Median is the middle value if the number of elements is
odd

e and the mean of the two middle numbers if the number
of elements is even

1f len (numbers)%2: #odd number of elements
median = numbers[len (numbers)//2]
else: feven number of elements
median = 0.5* (numbers[len (numbers)//
2-1]+numbers[len (numbers)//2])

e Recall: //is integer (or floor) division



Processing the Data

* We use a tuple to return all these values

return mymin, mymax, mean, stddev, median



Output the Results

e Now we need to write the results into a file

e |et's open and close it manually

outfile = open('results.csv', 'w')

outfile.close ()



Output the Results

e \We write the results into a csv file

 We can just use print, though sometimes formatting is
more appropriate

e Qutside the loop

rint ('number', 'xmymin', 'xmymax', 'xmean', 'xstdev', 'xmedian',
P Y Y
'"omymin', 'bmymax', 'bmean', 'bstdev', 'bmedian',
sep=',"', file=outfile)

* |nside the loop

print (number, xmymin/number, xmymax/number, xmean/number, xstdev/number, xmedian/number,

bmymin/number, bmymax/number, bmean/number, bstdev/number,

bmedian/number,
sep="',"', file=outfile)



Output the Results

 The result can be opened up with a default csv reader

@ Table data was imported.

P~

Adjust Settings

number xmymin Xmymax Xmean xstdev xmedian bmymin bmymax

100 3.42 8.04 5.19858 = 309.5306583600000 3.95 9.5

1000 5.244 9.141  5.803422000000000 K 319.13307591600000 5.46 8.235
10000 6.7459 10.2161 7.3201774  5629.705879492400 6.9133 9.5609 1
100000 8.74157 11.17784 9.94255932 = 42678.05432507380 9.867105 11.67727 1
500000 9.949352 11.313766 10.664554692  48206.61135096460 10.66412 12.06262 14.:
1000000 10.467729 11.521527 11.335300064  57336.42526458790 11.43143 12.534501 14.¢
2000000 11.4822405 12.47411  12.059577945000000  224651.085783464 12.1342805 12.4192725 14.4!
3000000 | 11.461472333333300 12.461902 12.121835006666700 194440.04750069700 12.196676833333300 12.632801333333300 14.518786666!
4000000 11.6981935 12.4043375 12.30390774375 | 64632.295572963600 12.362274875 13.2470055 14.4¢
5000000 11.361584 12.3409166 12.229062318 111627.96257134000 12.2892755 13.46254 15.00
6000000 | 12.019191833333300 12.889517166666700 12.677415187908500 128859.90743770000 12.702532333333300 13.014147666666700 14.599636666!
7000000 | 12.592950571428600 12.934370714285700 12.858827092857100 28261.628152309600 12.874604428571400 13.416018 | 14.460658428!
8000000 12.5974845 12.9809655 12.929097531875 | 38877.331831551200 12.9591665 13.54018675 14.461¢
9000000 | 12.490178555555600 13.000380222222200 12.9482682 55928.83858088550 12.972452944444400 13.484329222222200 14.684151222;
10000000 12.6398721 12.9877319  12.934557254000000 33053.09256567980 12.9546848 13.6929555 14.6¢




Output the Results

e Clearly, a format string is appropriate.

results

number xmymin xmymax xmean Xxstdev xmedian bmymin bmymax bmean bstdev bmedian

100 3.420 8.040 5.199 309.531 3.950 9.500 11.930 10.361 108.356 9.620
1000 5.244 9.141 5.803 319.133 5.460 8.235 13.878 10.961 1604.517 10.249
10000 6.746 10.216  7.320 5629.706 6.913 9.561 14.024 11.268 9299.045 11.561
100000 8.742 11.178 9.943 42678.054 9.867 11.677 14.443 12.621 28444.219 12.526
500000 9.949 11.314 10.665 48206.611 10.664 12.063 14.208 13.109 140526.975 13.190
1000000 | 10.468 11.522 11.335 57336.425 11431  12.535 14.618 13.513 105013.937 13.490
2000000 | 11.482 12.474 12.060 224651.086  12.134 12.419 14.451 13.538 280371.904 13.500
3000000  11.461 12.462 12.122 194440.048 12.197 12.633 14.519 13.721 381411.220 13.716
4000000 | 11.698 12.404 12.304 64632.296 12.362  13.247 14.470 13.797 177096.525 13.757
5000000 | 11.362 12.341  12.229 111627.963  12.289 13.463 15.011 14.062 259501.631 14.016
6000000 | 12.019 12.890 12.677 128859.907 12.703 13.014 14.600 13.879 349499.189 13.895
7000000 | 12.593 12.934 12.859 28261.628 12.875 13.416 14.461 13.910 176575.521 13.892
8000000 | 12.597 12.981 12.929 38877.332 12.959  13.540 14.462 13.953 201241.750 13.937
9000000 | 12.490 13.000 12.948 55928.839 12.972 13.484 14.684 14.082 235177.200 14.069
10000000 | 12.640 12.988 12.935 33053.093 12.955 13.693 14.693 14.117 239143.446 14.102




Checking the Results

e \Which of these columns does not make sense?

e \Where is the error?



