
Dealing with Files
Thomas Schwarz, SJ

Files
• Files

• Basic container of data in modern computing system

• Organized into a hierarchy of directories

Files
/

/etc /Applications /var /tmp /Users

/etc/master.passwd/etc/Apache

/Users/tschwarz /Users/guest /Users/technician

/Users/tschwarz/Documents /Users/tschwarz/Applications

/Users/tschwarz/Documents/PythonPrograms

/Users/tschwarz/Documents/hangman.py/Users/tschwarz/Documents/hangman.py/Users/tschwarz/Documents/hangman.py/Users/tschwarz/Documents/hangman.py/Users/tschwarz/Documents/hangman.py/Users/tschwarz/Documents/hangman.py/Users/tschwarz/Documents/hangman.py/Users/tschwarz/Documents/hangman.py/Users/tschwarz/Documents/hangman.py/Users/tschwarz/Documents/hangman.py

A small subset of directories and files on a system

Files in Python

• Files accessed in

• text mode

• Contents interpreted according to encoding

• binary mode

• Contents not interpreted

Files in Python
• Python interacts by files through

• reading

• writing / appending

• both

Files in Python
• Files need to be opened

• File given by name

• Relative path: Navigation from directory of the file

• Absolute path: Navigation from the root of the file
system

Files in Python
• File Name Examples:

• Absolute path on a Mac / Unix

/Users/tjschwarzsj/Google Drive/AATeaching/Python/Programs/pr.py

•Relate path on a Mac / Unix

•“../“ means move up on directory

pr.py

../Slides/week7.key

Files in Python
• Windows uses backward slashes to separate directories

in a file name

• Sometimes need to be escaped: \\

• Absolute paths need to include drive name:

• c:\\users\\tschwarz\\My Documents\\Teaching\
\temp.py

• We will typically read and create files in the same
directory as the python program is located

Files in Python
• Before files are used, program needs to open them

• After they are being used, program should close them

• Will automatically closed when program terminates

• Long-running programs could hog resources

Opening Files in Python
• File objects have normal variable names

inFile = open(“data.txt”,”w”)

• opens a file “data.txt” in write mode

• open takes :

• file name — absolute / relative path

• mode — r (read), w (write), a (appending)

• mode — b (binary), “” or t (text mode)

Closing Files in Python
• We close file by invoking close

• inFile.close()

Why we need to close files
• Files are automatically closed when the program

terminates

• When one application has opened a file for writing it
acquires a write lock on the file and no other application
can access the file.

• When one application has opened a file for reading, it
acquires a read lock on the file and no other application
can write to it.

• If you write programs that last more than a few seconds,
you do not want to hog files when you do not need them.

With-clauses
• Python 3 allows us to open and close files in a single

block (context)

with open("twoft8.11.txt") as inFile, open("twoftres8.11.txt",
"w") as outFile:

#Here you work with the file

Processing Files in Python
• We write strings to the file

 with open(‘somefile.txt’,’wt’) as f:

f.write(str(500)+”\n")

• Redirect print

 with open(‘somefile.txt’,’wt’) as f:

print(500, file = f)

Processing Files in Python
• Reading files

• The read-instruction

string = inFile.read(10)

reads ten bytes of the file

• Read the entire file

with open('somefile.txt', 'rt') as f:

data = f.read()

Processing Files in Python
• Reading files

• Read line by line

with open('somefile.txt', 'rt') as f:

 for line in f:

 #process line

More String Processing
• To process read lines:

• strip() and its variants lstrip(), rstrip()

• Remove white spaces (default) or list of characters
from the beginning & end of the string

• split() creates a list of words separated by white
space (default)

"This is a sentence with many words in
it.".split()

['This', 'is', 'a', 'sentence', 'with',
'many', 'words', 'in', 'it.']

Examples
• Finding all words over 13 letters long in “Alice in

Wonderland”

• Download from Project Gutenberg

import string

with open("alice.txt", "rt", encoding = "utf-8") as f:

 for line in f:

 for word in line.split():

 if len(word) > 13:

 print(word)

Examples
• Count the number of words and of lines in “Alice in

Wonderland”

• Read the file line by line

• The number of words in a line is the length of
line.split.

import string

line_counter = 0

word_counter = 0

with open("alice.txt", "rt", encoding = "utf-8") as f:

 for line in f:

 line_counter += 1

 word_counter += len(line.split())

print(line_counter, word_counter)

Problems with Line Endings
• ASCII code was developed when computers wrote to teleprinters.

• A new line consisted of a carriage return followed or preceded by a line-feed.

• UNIX and windows choose to different encodings

• Unix has just the newline character “\n”

• Windows has the carriage return: “\r\n”

• By default, Python operates in “universal newline mode”

• All common newline combinations are understood

• Python writes new lines with the system default

• You could disable this mechanism by opening a file with the universal newline
mode disabled by saying:

• open(“filename.txt”, newline='')

Encodings
• Information technology has developed a large number of

ways of storing particular data

• Here is some background

Using a forensics tool (Winhex) in order

to reveal the bytes actually stored

Encodings
• Teleprinters

• Used to send printed messages

• Can be done through a single line

• Use timing to synchronize up and down values

Encodings
• Serial connection:

• Voltage level during an interval indicates a bit

• Digital means that changes in voltage level can be
tolerated without information loss

time

voltage

1 0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1 1

Encodings
• Parallel Connection

• Can send more than one bit at a time

• Sometimes, one line sends a timing signal

Encodings
• Sending

• 1000

• 0100

• 1100

• 0100

• …

• Small errors in timing and
voltage are repaired
automatically

time

voltage

1 0 1 1 1 0 1 0 0 0 0 10 1 0 0 1 0 1 1 1

clock

time

voltage

1 0 1 1 0 1 1 0 1 0 1 10 0 0 1 1 0 1 0 1

line 0

time

voltage

0 1 1 0 1 0 1 0 1 0 0 11 1 0 0 1 0 1 0 1

line 1

time

voltage

0 0 0 0 0 0 0 0 0 0 1 01 0 0 0 1 0 1 0 0

line 2

time

voltage

0 0 0 1 0 0 0 0 1 1 0 00 1 1 1 1 0 1 1 1

line 3

Encodings
• Need a code to transmit letters and control signals

• Émile Baudot’s code 1870

• 5 bit code

• Machine had 5 keys, two for the left and three for the
right hand

• Encodes capital letters plus NULL and DEL

• Operators had to keep a rhythm to be understood on
the other side

Encodings
• Many successors to Baudot’s code

• Murray’s code (1901) for keyboard

• Introduced control characters such as Carriage
Return (CR) and Line Feed (LF)

• Used by Western Union until 1950

Encodings
• Computers and punch cards

• Needed an encoding for strings

• EBCDIC — 1963 for punch cards by IBM

• 8b code

Encodings
• ASCII — American Standard Code for Information Interchange — 1963

• 8b code

• Developed by American Standard Association, which became
American National Standards Institute (ANSI)

• 32 control characters

• 91 alphanumerical and symbol characters

• Used only 7b to encode them to allow local variants

• Extended ASCII

• Uses full 8b

• Chooses letters for Western languages

Encodings
• Unicode - 1991

• “Universal code” capable of implementing text in all
relevant languages

• 32b-code

• For compression, uses “language planes”

Encodings
• UTF-7 — 1998

• 7b-code

• Invented to send email more efficiently

• Compatible with basic ASCII

• Not used because of awkwardness in translating 7b
pieces in 8b computer architecture

Encodings
• UTF-8 — Unicode

• Code that uses

• 8b for the first 128 characters (basically ASCII)

• 16b for the next 1920 characters

• Latin alphabets, Cyrillic, Coptic, Armenian, Hebrew, Arabic,
Syriac, Thaana, N’Ko

• 24b for

• Chinese, Japanese, Koreans

• 32b for

• Everything else

Encodings
• Numbers

• There is a variety of ways of storing numbers (integers)

• All based on the binary format

• For floating point numbers, the exact format has a large
influence on the accuracy of calculations

• All computers use the IEEE standard

Python and Encodings
• Python “understands” several hundred encodings

• Most important

• ascii (corresponds to the 7-bit ASCII standard)

• utf-8 (usually your best bet for data from the Web)

• latin-1

• straight-forward interpretation of the 8-bit extended
ASCII

• never throws a “cannot decode” error

• no guarantee that it read things the right way

Python and Encodings

• If Python tries to read a file and cannot decode, it throws
a decoding exception and terminates execution

• We will learn about exceptions and how to handle them
soon.

• For the time being: Write code that tells you where the
problem is (e.g. by using line-numbers) and then fix the
input.

• Usually, the presence of decoding errors means that you
read the file in the wrong encoding

Using the os-module
• With the os-module, you can obtain greater access to the

file system

• Here is code to get the files in a directory

import os

def list_files(dir_name):

 files = os.listdir(dir_name)

 for my_file in files:

 print(my_file,
os.path.getsize(dir_name+"/"+my_file))

list_files(“Example")

Using the os-module
import os

def list_files(dir_name):

 files = os.listdir(dir_name)

 for my_file in files:

 print(my_file,
os.path.getsize(dir_name+"/"+my_file))

list_files(“Example")

Get a list of file names in the directory

Use the os-module
import os

def list_files(dir_name):

 files = os.listdir(dir_name)

 for my_file in files:

 print(my_file,
os.path.getsize(dir_name+"/"+my_file))

list_files(“Example")

Creating the path name
to the file

Use the os-module
import os

def list_files(dir_name):

 files = os.listdir(dir_name)

 for my_file in files:

 print(my_file,
os.path.getsize(dir_name+"/"+my_file))

list_files(“Example")

Gives the size of the file
in bytes

Use the os-module
import os

def list_files(dir_name):

 files = os.listdir(dir_name)

 for my_file in files:

 print(my_file,
os.path.getsize(dir_name+"/"+my_file))

list_files(“Example")

List and

Use the os-module
• Output:

• Note the Mac-trash file

Use the os-module
• Using the listing capability of the os-module, we can

process all files in a directory

• To avoid surprises, we best check the extension

• Assume a function process_a_file

• Our function opens a comma-separated (.csv) file

• Calculates the average of the ratios of the second
over the first entries

Use the os-module
• The process_a_file takes the file-name

• Calculates the average ratio

 1.290, 12.495

 2.295, 11.706

 3.063, 9.083

 4.058, 4.112

 4.891, 34.675

 5.737, 26.422

 7.137, 13.041

 7.832, 22.620

 9.103, 27.732

 9.885, 45.692

 11.411, 59.964

 11.895, 43.350

 12.867, 57.141

 13.633, 77.273

 14.560, 85.039

 16.369, 86.708

 16.902,109.293

 18.466,114.118

 19.454,117.050

 19.918,130.860

 21.390,139.678

 22.411,159.317

 23.418,174.622

 24.417,181.855

 1.147, 1.093

 1.997, 8.833

 2.781, 10.032

 4.225, 9.733

 5.455, 15.820

 6.151, 20.939

 6.573, 26.547

 8.058, 33.335

 9.132, 37.546

 10.474, 47.130

 11.207, 50.559

 12.413, 62.268

 12.525, 68.175

 13.826, 76.877

 15.327, 84.574

 15.664, 93.389

 17.446,103.726

 18.347,111.623

 18.655,119.797

 19.581,130.094

 21.190,143.306

 21.979,154.047

 23.250,169.502

 24.406,178.782

 24.650,190.953

 25.846,199.131

 27.373,214.514

 28.126,232.827

 28.580,245.687

 30.360,256.452

 31.337,270.849

 31.583,288.109

 33.288,303.786

 0.929, 9.373

 1.858, 14.439

 3.022, 21.861

 3.751, 19.097

 4.775, 10.838

 6.253, 0.280

 6.776, 37.029

 8.395, 37.459

 9.252, 27.295

 9.602, 34.994

 10.997, 37.458

 11.696, 66.393

 13.323, 62.255

 14.480, 84.116

 14.622, 87.145

 16.397, 74.933

 16.619,125.048

 17.838,110.667

 19.352,109.947

 19.587,118.509

 21.312,152.398

 21.628,145.806

 23.242,176.448

 24.191,155.716

 24.818,182.198

 26.495,197.358

 26.831,214.137

 1.147, 1.093

 1.997, 8.833

 2.781, 10.032

 4.225, 9.733

 5.455, 15.820

 6.151, 20.939

 6.573, 26.547

 8.058, 33.335

 9.132, 37.546

 10.474, 47.130

 11.207, 50.559

 12.413, 62.268

 12.525, 68.175

 13.826, 76.877

 15.327, 84.574

 15.664, 93.389

 17.446,103.726

 18.347,111.623

 18.655,119.797

 19.581,130.094

 21.190,143.306

 21.979,154.047

 23.250,169.502

 24.406,178.782

 24.650,190.953

 25.846,199.131

 27.373,214.514

 28.126,232.827

 28.580,245.687

 30.360,256.452

 31.337,270.849

 31.583,288.109

 33.288,303.786

def process_a_file(file_name):

 with open(file_name, "r") as infile:

 suma = 0

 nr_lines = 0

 for line in infile:

 nr_lines+=1

 array = line.split(',')

 suma+= float(array[1])/float(array[0])

 return suma/nr_lines

Use the os-module
• To process the directory

• Get the file names using os

• For each file name:

• Check whether the file name ends with .csv

• Call the process_a_file function

• Print out the result

Use of the os-module
def process_files(dir_name):

 files = os.listdir(dir_name)

 for my_file in files:

 if my_file.endswith('.csv'):

 print(my_file, process_a_file(

 “Example/{}”.format(my_file)))

Using format to create the
file name

Use of the os-module

Encodings
• Whenever you see strings:

• Think about encoding and decoding

• Example: the ë

• 'ë'.encode('utf-8').decode('latin-1')

• gives

• 'Ã«'

• Mixing encodings often creates chaos

Encodings
• Python is very good at guessing encodings

• Do not guess encodings

• E.g.: Processing html: read the http header:

• Content-Type: text/html; charset=utf-8

• If you need to guess, there is a module for it:

• chardet.detect(some_bytes)

Encodings
• Thinking about encoding and decoding string allows easy

internationalization

Bytearrays
• On (rare) occasions, you might want to work with bytes

directly

• Read the file in binary mode

• Bytearray allows you to manipulate directly binary data

• bytes have range 0-255

• content = bytearray(infile.read())

Exceptions

Exceptions
• There are two approaches to living life as a religious:

• Before you do anything, you ask for permission

• Strengthens humility and denial of self

• Do something and then ask for pardon

• Strengthens your Ego too much, but makes it easier on the superior

• Similarly: There are two approaches to the risks of live:

• Make sure you are prepared for anything

• Just live your life and deal with the consequences of your errors.

• In programming, Python tends to fall squarely into the second category

• But it makes more sense than in real life

Exceptions
• RAISING AN EXCEPTION interrupts the flow of the

program

• HANDLING AN EXCEPTION puts the program flow back
on track or deals with an error situation

• Such as out of memory, file cannot be found, CPU
illegal instruction error, division by zero, overflow, …

Python Philosophy

• Handle the common case.

• And deal with the exceptions.

Philosopher’s Football

C, Java, C++ Philosophy
• C: check before you assume

• Java, C++: Use exceptions to handle bad situations

• Python: Use exceptions for the not so ordinary

Python
• If an instruction or block of instruction can cause an error,

put it in a try block.

try:

 int(string)

Converts the string into
an integer

Notice that we are not using the result of the conversion,

we just attempt the conversion

Python Exceptions
• Then afterwards, handle the exception.

• You should, but are not required to specify the possible
offending exception

 try:

 int(string)

except ValueError:

 print(“Conversion error”)

If the conversion fails, a
ValueError is thrown

This block handles the
exception

Python Exceptions
• How do you find which error is thrown:

• You can cause the error and see what type of error it is

• You can look it up

Division by zero creates a
ZeroDivisionError

Python Exceptions
• Putting things together: Testing whether a string

represents an integer

def is_int(string):

 try:

 int(string)

 return True

 except:

 return False

Try out the conversion

Python Exceptions
• Putting things together: Testing whether a string

represents an integer

def is_int(string):

 try:

 int(string)

 return True

 except:

 return False

Try out the conversion

It worked:

We return True

Python Exceptions
• Putting things together: Testing whether a string

represents an integer

def is_int(string):

 try:

 int(string)

 return True

 except:

 return False

Try out the conversion

It did NOT work:

An exception is thrown

We return FALSE

Python Exceptions
• As you can see from this example, the moment an

exception is thrown, we jump to the exception handler.

Python Exceptions
• When to use exceptions and when to use if

• Recall: Using if is defensive programming

• Recall: Using exceptions amounts to the same degree
of safety, but is offensive

• Rule of thumb:

• If exceptions are raised infrequently, then use them

Python Exceptions
• Let’s make some timing experiments

• Define two functions that square all elements in a list, if the
elements are integers.

def square_list(lista):

 result = []

 for element in lista:

 if element.isdigit():

 result.append(int(element)**2)

def square_list2(lista):

 result = []

 for element in lista:

 try:

 result.append(int(element)**2)

 except:

 pass

Python Exceptions
• The pass instruction:

• When Python expects a statement, but we don’t have
one:

• Just use pass

• The No-Operation instruction

Python Exceptions
• Recall how to use the time-module to obtain the CPU

(wall-clock) time

• We use this to measure execution time

• First a list that only contains integers
def timeit(function, trials):

 lista = [str(i) for i in range(1000000)]

 count = 0

 for _ in range(trials):

 start = time.time()

 lista2 = function(lista)

 count += time.time()-start

 return count/trials

Python Exceptions
• Result: Exceptions are somewhat faster

Python Exceptions
• What if none of the list elements are integers:

def timeit(function, trials):

 lista = ["a"+str(i) for i in range(1000000)]

 count = 0

 for _ in range(trials):

 start = time.time()

 lista2 = function(lista)

 count += time.time()-start

 return count/trials

Exceptions are
much slower

Python Exceptions
• What about if the letter is at the end

def timeit(function, trials):

 lista = [str(i)+"a" for i in range(1000000)]

 count = 0

 for _ in range(trials):

 start = time.time()

 lista2 = function(lista)

 count += time.time()-start

 return count/trials

Exceptions are
still much slower

Self Test
• Define a function that calculates the geometric mean of

two numbers.

• Use an exception to deal with a ValueError, arisen by
taking the square-root of a negative number

• Here is the if-version. We return None if there is no
mean.

def geo(x, y):

 if x*y > 0:

 return math.sqrt(x*y)

 return None

Self Test Solution

def geoe(x,y):

 try:

 return math.sqrt(x*y)

 except ValueError:

 return None

Multiple Exceptions
• We can write an exception handler that handles all the

exceptions

• This is discouraged since there are just too many
exceptions that can occur

• such as out-of-memory, system-error, keyboard-
interrupt …

• In this case, the except clause specifies no exception

try:

 accum += 1/n

except:

print(“something bad happened”)

No exception specified

Handler handles

everything

Multiple Exceptions
• Normally, you want to specify which exceptions you are

handling

• You can specify several exception handles by repeating the
exception clause

• Or you can handle a list of exceptions
def test():

 try:

 f = open("none.txt")

 block = f.read(256)

 except IOError:

 print("something happened when reading the file")

 except EOFError:

 print("ran out of file")

 except (KeyboardInterrupt, ValueError):

 print("something strange happened")

The parentheses are
necessary

Cleaning Up
• Sometimes you need to make sure that failure-prone

code cleans up

• Use the finally clause

• Guaranteed to be executed

• Even with return statements

• Even when exceptions are raised

Example for finally clause

• If we open a file without the if-clause, we are morally
obliged to close it

• Let’s say, if you have a long-running process that only
needs a file for a little time, you should not hog the file
and prevent others from accessing it.

Example for finally clause
def harmonic(filename):

 """

 Assumes that the elements in the file are numbers.

 We return the harmonic mean of the numbers.

 """

 count = 0

 accumulator = 0

 try:

 infile = open(filename, encoding="utf-8")

 for line in infile:

 for words in line.split():

 accumulator += 1/int(words)

 count += 1

 return count/accumulator

 except ZeroDivisionError:

 print("saw a zero")

 return 1000000000

 except ValueError:

 print("saw a non-integer")

 return 0

 finally:

 print("I am done and closing the file")

 infile.close()

Return in the try block

Return in the handler

But finally is
guaranteed to run
before any of the

returns

Raising exceptions
• You can also raise your own exception

• You can even define your own exceptions when you
have understood classes

• Just say: raise ValueError

• or whatever the exception is that you want to raise.

Self Test
• Recall that the finally clause is always executed.

• What is the output of the following code

def raising():

 try:

 raise ValueError

 except ValueError:

 return 0

 finally:

 return 1

Answer
• The functions returns 1

• The exception is raised and control passes to the
exception handler

• Before the exception handler can return, the finally
clause is executed

• And that one returns 1

Multiple Exceptions
• It is common that Python code throws multiple

exceptions

• Can list different exceptions using a tuple and handle
them all

• Or write different exception handlers

try:

 client_obj.get_url(url)

except (URLError, ValueError, SocketTimeout):

 client_obj.remove_url(url)

try:

 client_obj.get_url(url)

except (URLError, ValueError):

 client_obj.remove_url(url)

except SocketTimeout:

 client_obj.handle_url_timeout(url)

Handles to Exceptions
• Exceptions are classes that have methods

• To gain access use the as keyword

try:

 f = open(filename)

except OSError as e:

 if e.errno == errno.ENOENT:

 print('file not found')

 elif e.errno == errno.EACCES:

 print('permission denied')

 else:

 print('unexpected error')

Multiple Exceptions
• More than one exception can be triggered

• The first matching exception handler will handle, even if
a more specific exception handler is available

• prints out 'it failed'

try:

 f = open(a_missing_file)

except OSError:

 print('it failed')

except FileNotFoundError:

 print('File not found')

Multiple Exceptions
• Exceptions are in a hierarchy

• catches all exceptions except SystemExit,
KeyboardInterrupt, GeneratorExit

• If you want to catch those, change Exception to
BaseException

try:

 …

except Exception as e:

 …

 print(e)

Creating Custom
Exceptions

• To create a new exception, just define a class that
derives from Exception

class NetworkError(Exception):

 pass

class TimeoutError(NetworkError):

 pass

Creating Custom
Exceptions

• If your custom exception overrides the constructor

• Make sure you call the exception class constructor

• Parts of Python and libraries except all exceptions to
have an .args attribute, that will be provided by calling
the super

class CustomError(Exception):

 def __init__(self, message, status):

 self.message = message

 self.status = status

Chaining Exceptions
• Raise an exception in response to catching a different

exception, but include information about both exceptions
in the traceback

def example():

 try:

 int('N/A')

 except ValueError as e:

 raise RuntimeError('A parsing error occured') from e

Assertions
• To prevent error conditions, can use assertions

• E.g.: your code only runs on a linux machine

• If the condition is violated, throws an AssertionError

• But the assert statements are optimized away when

import sys

assert ('linux' in sys.platform),

 'this code runs on linus only')

Else Statement
• Else block after a try block is executed only if no

exception was raised

•

try:

except:

else:

finally:

run this code

execute if there is an
exception

execute if there is not
an exception

always run this code

Else Statement
• Exceptions in the else block would not be caught by the

current try block

for arg in sys.argv[1:]:

 try:

 f = open(arg, 'r')

 except OSError:

 print('cannot open', arg)

 else:

 print(arg, 'has', len(f.readlines()), 'lines')

 f.close()

Exercises
• The following code is potentially buggy.

info = [{'score': 3, 'confidence': 2},

 {'score': -1, 'confidence': 4},

 {'score': 1, 'confidence': 4},

 {'confidence': 0}]

def get_total_score(info):

 total = 0

 for item in info:

 total += item['score']

 return total

get_total_score(info)

Solutions
def get_total_score(info):

 total = 0

 number_of_items = 0

 for item in info:

 try:

 total += item['score']

 except KeyError:

 pass

 else:

 number_of_items += 1

 return total/number_of_items

print(get_total_score(info))

Exercises
• The following code is potentially buggy.

import os

def check(directory):

 for file_name in os.listdir(directory):

 with open(file_name) as infile:

 nr = len(infile.readlines())

 print(file_name, nr)

Solutions
import os

def check(directory):

 for file_name in os.listdir(directory):

 try:

 with open(file_name) as infile:

 nr = len(infile.readlines())

 print(file_name, nr)

 except UnicodeDecodeError:

 print('unicode decode error in', file_name)

 except IsADirectoryError:

 print(f'{file_name} is a directory')

Use Case

Use Case
• Given experimental data in several files, generate

statistics: mean, median, standard deviation, min, max

• First, need to read and understand the files

•

Understanding the File
• We want to extract data from the rtf files

• Which is a special format with some metadata

• So, we open up a file and read its contents:

with open('m4m.rtf') as infile:

 for line in infile:

 print(line.strip())

Understanding the File
• First thing: 'rtf' is good because we do not need to

struggle with encoding

• Second: We want to extract the data from the second and
fifth column and get statistics about them

• Third: The data is organized into files and the file name
gives the parameter. The parameter also appear in the
nineth line.

with open('m4m.rtf') as infile:

 for _ in range(9):

 line = infile.readline()

 if '4000000' in line:

 print(line)

Checking the File
• To open up all the files, we use a for loop

• This gives us more control then using the os-interface
because files might be added to the directory

• Trick: Just put the part of the filename into a list that
changes

Checking the File
• We also want to ensure that the file name and the putative

parameter are the same.

• Write the parameters and the filenames into a list

• Then in a for, loop over the zip of the two lists

Checking the File
numbers = [100, 1000, 10000, 100000, 500000, 10**6, 2*10**6,
3*10**6, 4*10**6,

 5*10**6, 6*10**6, 7*10**6, 8*10**6, 9*10**6,
10*10**6]

for filename, number in zip(['100','1k', '10k',

 '100k', '500k', '1m', '2m', '3m', '4m', '5m',

 '6m', '7m', '8m', '9m', '10m'],numbers):

 filename = 'm'+filename+'.rtf'

 with open(filename) as infile:

 for _ in range(9):

 line = infile.readline()

 if str(number) in line:

 print(f'Processing {filename}.')

 else:

 print(f'Error in {filename}')

Extracting the Data
• After the next line, there is data

•

• Extract the second and the fifth column

• This uses split

xor: 49345466 12.3364	base: 55607792 13.9019	 \

xor: 49148572 12.2871	base: 54566308 13.6416	 \

xor: 49196259 12.2991	base: 55123832 13.781	\

xor: 48912397 12.2281	base: 54718196 13.6795	 \

xor: 49537206 12.3843	base: 54457012 13.6143	 \

xor: 49586577 12.3966	base: 54948304 13.7371	 \

 for line in infile:

 contents = line.strip().split()

Extracting the Data
• The result is an array with substrings:

• You might notice the escaped back-slash at the end

['xor:', '721', '7.21', 'base:', '1188', '11.88', '\\']

['xor:', '761', '7.61', 'base:', '1192', '11.92', '\\']

['xor:', '754', '7.54', 'base:', '1192', '11.92', '\\']

['xor:', '705', '7.05', 'base:', '1008', '10.08', '\\']

['xor:', '640', '6.4', 'base:', '1047', '10.47', '\\']

['xor:', '608', '6.08', 'base:', '1049', '10.49', '\\']

['xor:', '658', '6.58', 'base:', '1049', '10.49', '\\']

['xor:', '679', '6.79', 'base:', '1049', '10.49', '\\']

Extracting the Data
• We convert the substrings to ints and store them in an

array each

 xor, base = [], []

 for line in infile:

 contents = line.strip().split()

 try:

 xor.append(int(contents[1]))

 base.append(int(contents[4]))

 except:

 print(line, 'is causing a problem')

Processing the Data
• Now we process these numbers

• We are given an array

• We want to obtain min, max, mean, median, standard
deviation

• Some of this are built in functions

Processing the Data
• Can also use sum on an array

• Standard Deviation is the average square of the difference
between value and mean

def process(numbers):

 mymin = min(numbers)

 mymax = max(numbers)

 mean = sum(numbers)/len(numbers)

 stddev = sum([(x-mean)**2 for x in numbers])/len(numbers)

Processing the Data
• Median is the middle value if the number of elements is

odd

• and the mean of the two middle numbers if the number
of elements is even

• Recall: // is integer (or floor) division

if len(numbers)%2: #odd number of elements

 median = numbers[len(numbers)//2]

 else: #even number of elements

 median = 0.5*(numbers[len(numbers)//
2-1]+numbers[len(numbers)//2])

Processing the Data
• We use a tuple to return all these values

return mymin, mymax, mean, stddev, median

Output the Results
• Now we need to write the results into a file

• Let's open and close it manually

outfile = open('results.csv', 'w')

…

outfile.close()

Output the Results
• We write the results into a csv file

• We can just use print, though sometimes formatting is
more appropriate

• Outside the loop

• Inside the loop
 print(number, xmymin/number, xmymax/number, xmean/number, xstdev/number, xmedian/number,

 bmymin/number, bmymax/number, bmean/number, bstdev/number, bmedian/number,

 sep=',', file=outfile)

print('number', 'xmymin', 'xmymax', 'xmean', 'xstdev', 'xmedian',

 'bmymin', 'bmymax', 'bmean', 'bstdev', 'bmedian',

 sep=',', file=outfile)

Output the Results
• The result can be opened up with a default csv reader

Output the Results
• Clearly, a format string is appropriate.

Checking the Results
• Which of these columns does not make sense?

• Where is the error?

