Dealing with Files

Thomas Schwarz, SJ

Files

- Files
 - Basic container of data in modern computing system
 - Organized into a hierarchy of directories

A small subset of directories a

- Files accessed in
 - text mode
 - Contents interpreted according to encoding
 - binary mode
 - Contents not interpreted

- Python interacts by files through
 - reading
 - writing / appending
 - both

- Files need to be opened
 - File given by name
 - Relative path: Navigation from directory of the file
 - Absolute path: Navigation from the root of the file system

- File Name Examples:
 - Absolute path on a Mac / Unix

/Users/tjschwarzsj/Google Drive/AATeaching/Python/Programs/pr.py

- Relate path on a Mac / Unix
 - •"../" means move up on directory

pr.py

../Slides/week7.key

- Windows uses backward slashes to separate directories in a file name
 - Sometimes need to be escaped: \\
 - Absolute paths need to include drive name:
 - c:\\users\\tschwarz\\My Documents\\Teaching\ \temp.py
- We will typically read and create files in the same directory as the python program is located

- Before files are used, program needs to open them
- After they are being used, program should close them
 - Will automatically closed when program terminates
 - Long-running programs could hog resources

Opening Files in Python

• File objects have normal variable names

inFile = open("data.txt","w")

opens a file "data.txt" in write mode

- open takes :
 - file name absolute / relative path
 - mode r (read), w (write), a (appending)
 - mode b (binary), "" or t (text mode)

Closing Files in Python

- We close file by invoking close
 - inFile.close()

Why we need to close files

- Files are automatically closed when the program terminates
- When one application has opened a file for writing it acquires a write lock on the file and no other application can access the file.
- When one application has opened a file for reading, it acquires a read lock on the file and no other application can write to it.
- If you write programs that last more than a few seconds, you do not want to hog files when you do not need them.

With-clauses

 Python 3 allows us to open and close files in a single block (context)

with open("twoft8.11.txt") as inFile, open("twoftres8.11.txt",
"w") as outFile:

#Here you work with the file

Processing Files in Python

• We write strings to the file

with open('somefile.txt','wt') as f:

f.write(str(500)+"n")

• Redirect print

with open(`somefile.txt','wt') as f:
print(500, file = f)

Processing Files in Python

- Reading files
 - The read-instruction

string = inFile.read(10)

reads ten bytes of the file

• Read the entire file

with open('somefile.txt', 'rt') as f: data = f.read()

Processing Files in Python

- Reading files
 - Read line by line

with open('somefile.txt', 'rt') as f:
 for line in f:
 #process line

More String Processing

- To process read lines:
 - strip() and its variants lstrip(), rstrip()
 - Remove white spaces (default) or list of characters from the beginning & end of the string
 - split() creates a list of words separated by white space (default)

```
"This is a sentence with many words in it.".split()
```

```
['This', 'is', 'a', 'sentence', 'with',
'many', 'words', 'in', 'it.']
```

Examples

- Finding all words over 13 letters long in "Alice in Wonderland"
 - Download from Project Gutenberg

```
import string
with open("alice.txt", "rt", encoding = "utf-8") as f:
    for line in f:
        for word in line.split():
            if len(word) > 13:
                print(word)
```

Examples

- Count the number of words and of lines in "Alice in Wonderland"
 - Read the file line by line
 - The number of words in a line is the length of line.split.

```
import string
line_counter = 0
word_counter = 0
with open("alice.txt", "rt", encoding = "utf-8") as f:
    for line in f:
        line_counter += 1
        word_counter += len(line.split())
print(line_counter, word_counter)
```

Problems with Line Endings

- ASCII code was developed when computers wrote to teleprinters.
 - A new line consisted of a carriage return followed or preceded by a line-feed.
- UNIX and windows choose to different encodings
 - Unix has just the newline character "\n"
 - Windows has the carriage return: "\r\n"
- By default, Python operates in "universal newline mode"
 - All common newline combinations are understood
 - Python writes new lines with the system default
- You could disable this mechanism by opening a file with the universal newline mode disabled by saying:
 - open("filename.txt", newline='')

- Information technology has developed a large number of ways of storing particular data
 - Here is some background

The Lot front Manadam W.	Test Second	a Parise Window Male			and the second design of the s	and the second se	L L L L L
	De D A	<pre>nt options weaple rep 1.15, 55 AL → -P) d= =</pre>			DE A		(=1#1
Caulture	Boot Sector NTI	ister i					
Die Die	Offset	0 1 2 3 4 5 5	7	CDEF			
	000000000	\$4 65 6D 70 6C 61 74 65 63 74 6F 72 20 4E 2F 20 54 65 6D 70 6C	65 20 22 42 6F 6 54 46 53 22 00 0 61 74 65 20 62 7	F 74 20 53 A 0D 0A 2F 9 20 53 74	Heaplate "Boot S ector NTFS" / / Teaplate by St	Boot Sector NTFS 1 D*Downloads/wint	pi Jurregidenci
	02005030 03000040	65 66 61 6E 20 46 6C 0D 04 2F 2F 20 50 2D 27 61 72 65 20 54 65	65 69 73 63 68 6 57 61 79 73 20 5 63 68 68 68 67 6	D 61 6E 6E 3 6F 66 74 F 67 79 20	etas Fleischaans // X-Ways Soft g	File size:	1,6 Ki 1,614 byte
	02000060	41 47 0D 0A 0D 0A 2F	2F 20 54 6F 20 6	2 65 20 61	AG // To be a	DOS name:	BOOTSE-3.TPI
	000000000	20 30 20 6F 66 20 61 72 6D 61 74 74 65 64	6E 20 4E 54 46 5 0D 0A 2F 2F 20 6	3 74 68 72 3 2D 66 6F C 6F 67 69	0 of an NTFS-fo mattel // logi	Default Edit Mode State	orgen
	02000020	63 61 6C 20 64 72 69 74 68 65 20 6D 69 72 69 66 20 74 68 65 20	76 65 20 6F 72 2 72 6F 72 20 63 6 62 6F 6F 74 00 0	0 74 6F 20 F 70 79 20 A 2F 2F 28	cal drive or to the sirror copy of the boot	Unde level: Unde reveneer:	-
	00005000	73 65 63 74 6F 72 2C 6C 6C 20 62 65 20 6C	20 77 68 69 63 6 6F 63 61 74 65 6	8 20 77 69 4 20 6E 65	mector, which wi 11 be located ne	Creation time	27-03-2012
	000000F0 00000100	61 72 20 74 68 65 20 2F 20 74 68 65 20 70 0D 01 0D 01 64 65 73	65 6E 64 20 6F 6 61 72 74 69 74 6 63 72 69 70 74 6	6 00 0A 2F 9 6F 6E 2E 9 4F 4E 20	ar the end of / / the partition	Last write time.	21-03-251 16:04:0
	00000120	22 42 6F 6F 74 20 73 61 6E 20 4E 54 46 53	65 63 74 6F 72 2 20 70 61 72 74 6	0 6F 66 20 9 74 69 6F	"Boot sector of an NTF5 partitio	Atributes: Icone	
	00000140 00000150 00000160 00000170 00000180	6E 22 0D 0A 61 70 70 69 73 6B 0D 0A 73 65 6E 65 64 0D 0A 0D 0A 39 78 30 30 09 22 45 2F 20 62 79 74 65 73	6C 69 65 73 5F 7 63 74 6F 72 2D 6 72 65 71 75 69 7 42 22 20 09 09 0 20 30 20 74 6F 2	4 4F 20 64 1 6C 69 67 2 65 73 20 9 09 09 2F 0 32 20 61	n' applies_to d isk sector-alig ned requires 0x00 *E8* / / bytes 0 to 2 a	Node: Character set: Offsets: Bytes per page:	CP 1252 hexadecimal 32b;16-512
	00000190 00000180 00000180	72 65 0D 0A 72 65 71 32 09 22 39 30 22 09 50 20 69 68 73 74 72	75 69 72 65 73 2 09 09 09 09 27 2 75 63 74 69 67 6	0 30 78 30 F 20 4A 4D E 0D 0A 72	re requires Ox0 2 '90' // 3K P instruction r	Window #. No. of windows:	1
	00000100	65 71 75 69 72 65 73 20 35 34 20 34 36 20	20 30 70 30 33 0 35 33 20 32 30 2	9 22 34 45 2 69 2F 2F	equires 0x03 "4E 54 46 53 20" //	Opboard	evaluation to a close of
	000001E0 000001F0	20 47 44 20 6D 75 73 53 22 6D 0A 72 65 71	74 20 62 65 20 2 75 69 72 65 73 2	2 4E 54 46 0 30 78 31	S" requires 0x1 .	C'User/Est'Appl	Data Local Temp
	Page 1 d 4	Offset:	0;	+116	Bock:	n/s Sax	

Using a forensics tool (Winhex) in order to reveal the bytes actually stored

- Teleprinters
 - Used to send printed messages
 - Can be done through a single line
 - Use timing to synchronize up and down values

- Serial connection:
 - Voltage level during an interval indicates a bit
 - Digital means that changes in voltage level can be tolerated without information loss

- Parallel Connection
 - Can send more than one bit at a time
 - Sometimes, one line sends a timing signal

- Sending
 - 1000
 - 0100
 - 1100
 - 0100
 - ..
- Small errors in timing and voltage are repaired automatically

- Need a code to transmit letters and control signals
- Émile Baudot's code 1870
 - 5 bit code
 - Machine had 5 keys, two for the left and three for the right hand
 - Encodes capital letters plus NULL and DEL
 - Operators had to keep a rhythm to be understood on the other side

- Many successors to Baudot's code
 - Murray's code (1901) for keyboard
 - Introduced control characters such as Carriage Return (CR) and Line Feed (LF)
 - Used by Western Union until 1950

- Computers and punch cards
 - Needed an encoding for strings
 - EBCDIC 1963 for punch cards by IBM
 - 8b code

- ASCII American Standard Code for Information Interchange 1963
 - 8b code
 - Developed by American Standard Association, which became American National Standards Institute (ANSI)
 - 32 control characters
 - 91 alphanumerical and symbol characters
 - Used only 7b to encode them to allow local variants
 - Extended ASCII
 - Uses full 8b
 - Chooses letters for Western languages

- Unicode 1991
 - "Universal code" capable of implementing text in all relevant languages
 - 32b-code
 - For compression, uses "language planes"

- UTF-7 1998
 - 7b-code
 - Invented to send email more efficiently
 - Compatible with basic ASCII
 - Not used because of awkwardness in translating 7b pieces in 8b computer architecture

- UTF-8 Unicode
 - Code that uses
 - 8b for the first 128 characters (basically ASCII)
 - 16b for the next 1920 characters
 - Latin alphabets, Cyrillic, Coptic, Armenian, Hebrew, Arabic, Syriac, Thaana, N'Ko
 - 24b for
 - Chinese, Japanese, Koreans
 - 32b for
 - Everything else

- Numbers
 - There is a variety of ways of storing numbers (integers)
 - All based on the binary format
 - For floating point numbers, the exact format has a large influence on the accuracy of calculations
 - All computers use the IEEE standard

	S sign	E: Biased Exponent 8 bits	Z Significand 23 bits			
Bit index	31	30 23	22	0		
• Doul	ole pre	cision forma	it			
	S sign	E: Biased Exponent 11 bits	Z Significand 20 bits			
Bit index	31 30 2019					
	Sig	Significand continued 32 bits				

IEEE 754 Standard for Floating Point

Python and Encodings

- Python "understands" several hundred encodings
 - Most important
 - ascii (corresponds to the 7-bit ASCII standard)
 - **utf-8** (usually your best bet for data from the Web)
 - latin-1
 - straight-forward interpretation of the 8-bit extended ASCII
 - never throws a "cannot decode" error
 - no guarantee that it read things the right way

Python and Encodings

- If Python tries to read a file and cannot decode, it throws a decoding exception and terminates execution
- We will learn about exceptions and how to handle them soon.
- For the time being: Write code that tells you where the problem is (e.g. by using line-numbers) and then fix the input.
- Usually, the presence of decoding errors means that you read the file in the wrong encoding

Using the os-module

- With the os-module, you can obtain greater access to the file system
 - Here is code to get the files in a directory

```
import os

def list_files(dir_name):
    files = os.listdir(dir_name)
    for my_file in files:
        print(my_file,
        os.path.getsize(dir_name+"/"+my_file))
```

```
list_files("Example")
```
Using the os-module

import os

Get a list of file names in the directory

def list_files(dir_name, files = os.listdir_arr_name) for my_file in files: print(my_file, os.path.getsize(dir_name+"/"+my_file))

list_files("Example")

import os

```
def list_files(dir_name):
    files = os.listdir(dir_name)
    for my_file in files:
        print(my_file,
        os.path.getsize(dir_name+"/"+my_file))
```

list_files("Example")

Creating the path name to the file

import os

```
def list_files(dir_name):
    files = os.listdir(dir_name)
    for my_file in files:
        print(my_file,
os.path.getsize(dir_name+"/"+my_file))
list_files("Example")
Gives the size of the file
        in bytes
```

import os

def list_files(dir_name):
 files = os.listdir(dir_name)
 for my_file in files:
 print(my_file,
 os.path.getsize(dir_name+"/"+my_file))
 list files("Example")

List and

- Output:
 - Note the Mac-trash file

RESTART: /Users/thomasschwa le14/generator.py .DS_Store 6148 results1.csv 384 results0.csv 528 results2.csv 432 results3.csv 368 results4.csv 464

- Using the listing capability of the os-module, we can process all files in a directory
 - To avoid surprises, we best check the extension
 - Assume a function process_a_file
 - Our function opens a comma-separated (.csv) file
 - Calculates the average of the ratios of the second over the first entries

 The process_a_file takes the file-name Calculates the average ratio 	$\begin{array}{c} 1.290, 12.495\\ 2.295, 11.706\\ 3.063, 9.083\\ 4.058, 4.112\\ 1.147, 1.093\\ 1.997, 8.833\\ 2.781, 10.032\\ 1.997, 8.833\\ 2.781, 10.032\\ 1.858, 14.439\\ 3.022, 21.861\\ 1, 20.939\\ 3.751\\ 19.097\\ 3, 26.547\\ 3.022, 21.861\\ 1, 20.939\\ 3.335\\ 441\\ 2.781, 10.032\\ 37.029\\ 4.47.130\\ 339\\ 5.455, 15.820\\ 27.295\\ 3, 62.268\\ 708\\ 6.151, 20.939\\ 34.994\\ 5, 68.175\\ 18\\ 93\\ 6.573, 26.547\\ 37.458\\ 6, 76.877\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18$
<pre>def process_a_file(file_name): with open(file_name, "r") as infile: suma = 0</pre>	8.058, 33.335 66.393 7, 84.574 9.30 9.132, 37.546 62.255 4, 93.389 60 10.474, 47.130 84.116 6,103.726 778 11.207. 50.559 87.145 7,111.623 17 .933 5,119.797 522 .048 1,130.094 .667 0,143.306 .947 9,154.047 .509 0,169.502 .398 6,178.782 .806 0,190.953 .448 6,199.131 .716 3,214.514 .716 3,214.514
<pre>nr_lines = 0 for line in infile: nr_lines+=1 array = line.split(',') suma+= float(array[1])/float(a return suma/nr_lines</pre>	<pre>.198 6,232.827 .358 0,245.687 .137 0,256.452 7,270.849 33.288,303.786</pre>

- To process the directory
 - Get the file names using os
 - For each file name:
 - Check whether the file name ends with .csv
 - Call the process_a_file function
 - Print out the result

RESTART: /Users/thomasschwarz/Docu le14/generator.py >>> process_files('Example') results1.csv 5.2819632072675295 results0.csv 5.920382285263983 results2.csv 5.7506863373894666 results3.csv 4.801235259621119 results4.csv 6.409464135625922

Encodings

- Whenever you see strings:
 - Think about encoding and decoding
 - Example: the ë
 - 'ë'.encode('utf-8').decode('latin-1')
 - gives
 - 'ë'
- Mixing encodings often creates chaos

Encodings

- Python is very good at guessing encodings
 - Do not guess encodings
 - E.g.: Processing html: read the http header:
 - Content-Type: text/html; charset=utf-8
 - If you need to guess, there is a module for it:
 - chardet.detect(some_bytes)

Encodings

• Thinking about encoding and decoding string allows easy internationalization

Bytearrays

- On (rare) occasions, you might want to work with bytes directly
 - Read the file in binary mode
 - Bytearray allows you to manipulate directly binary data
 - bytes have range 0-255
 - content = bytearray(infile.read())

Exceptions

Exceptions

- There are two approaches to living life as a religious:
 - Before you do anything, you ask for permission
 - Strengthens humility and denial of self
 - Do something and then ask for pardon
 - Strengthens your Ego too much, but makes it easier on the superior
- Similarly: There are two approaches to the risks of live:
 - Make sure you are prepared for anything
 - Just live your life and deal with the consequences of your errors.
- In programming, Python tends to fall squarely into the second category
 - But it makes more sense than in real life

Exceptions

- RAISING AN EXCEPTION interrupts the flow of the program
- HANDLING AN EXCEPTION puts the program flow back on track or deals with an error situation
 - Such as out of memory, file cannot be found, CPU illegal instruction error, division by zero, overflow, ...

Python Philosophy

Philosopher's Football

- Handle the common case.
 - And deal with the exceptions.

C, Java, C++ Philosophy

- C: check before you assume
- Java, C++: Use exceptions to handle bad situations
- Python: Use exceptions for the not so ordinary

Python

• If an instruction or block of instruction can cause an error, put it in a *try block*.

Notice that we are not using the result of the conversion, we just attempt the conversion

- Then afterwards, *handle the exception*.
 - You *should*, but are not required to specify the possible offending exception

- How do you find which error is thrown:
 - You can cause the error and see what type of error it is
 - You can look it up

```
>>> 5/0
Traceback (most recent call last):
   File "<pyshell#5>", line 1, in <module>
        5/0
ZeroDivisionError: division by zero
Division by zero creates a
   ZeroDivisionError
```

Putting things together: Testing whether a string represents an integer

Putting things together: Testing whether a string represents an integer

• Putting things together: Testing whether a string represents an integer

It did NOT work: An exception is thrown We return FALSE

• As you can see from this example, the moment an exception is thrown, we jump to the exception handler.

- When to use exceptions and when to use if
 - Recall: Using if is defensive programming
 - Recall: Using exceptions amounts to the same degree of safety, but is offensive
- Rule of thumb:
 - If exceptions are raised infrequently, then use them

- Let's make some timing experiments
 - Define two functions that square all elements in a list, if the elements are integers.

```
def square_list(lista):
    result = []
    for element in lista:
        if element.isdigit():
            result.append(int(element)**2)
```

```
def square_list2(lista):
    result = []
    for element in lista:
        try:
            result.append(int(element)**2)
            except:
                pass
```

- The pass instruction:
 - When Python expects a statement, but we don't have one:
 - Just use pass
 - The No-Operation instruction

- Recall how to use the time-module to obtain the CPU (wall-clock) time
- We use this to measure execution time
 - First a list that only contains integers

```
def timeit(function, trials):
    lista = [str(i) for i in range(1000000)]
    count = 0
    for _ in range(trials):
        start = time.time()
        lista2 = function(lista)
        count += time.time()-start
    return count/trials
```

• Result: Exceptions are somewhat faster

>>> timeit(square_list, 5)
0.6882429599761963
>>> timeit(square_list2, 5)
0.615144681930542

• What if none of the list elements are integers:

```
def timeit(function, trials):
    lista = ["a"+str(i) for i in range(1000000)]
    count = 0
    for _ in range(trials):
        start = time.time()
        lista2 = function(lista)
        count += time.time()-start
    return count/trials
```

Exceptions are

much slower

```
>>> timeit(square_list, 5)
0.07187228202819824
>>> timeit(square_list2, 5)
1.2984710693359376
```

What about if the letter is at the end

```
def timeit(function, trials):
    lista = [str(i)+"a" for i in range(1000000)]
    count = 0
    for _ in range(trials):
        start = time.time()
        lista2 = function(lista)
        count += time.time()-start
    return count/trials
```


Self Test

- Define a function that calculates the geometric mean of two numbers.
- Use an exception to deal with a ValueError, arisen by taking the square-root of a negative number
 - Here is the if-version. We return None if there is no mean.

```
def geo(x, y):
    if x*y > 0:
        return math.sqrt(x*y)
    return None
```

Self Test Solution

def geoe(x,y):
 try:
 return math.sqrt(x*y)
 except ValueError:
 return None

Multiple Exceptions

- We can write an exception handler that handles <u>all</u> the exceptions
 - This is discouraged since there are just too many exceptions that can occur
 - such as out-of-memory, system-error, keyboardinterrupt ...
 - In this case, the except clause specifies no exception

```
try:
    accum += 1/n
except:
    print("something bad happened
No exception specified
Handler handles
everything
```
Multiple Exceptions

- Normally, you want to specify which exceptions you are handling
- You can specify several exception handles by repeating the exception clause
- Or you can handle a list of exceptions

```
def test():
    try:
        f = open("none.txt")
        block = f.read(256)
    except IOError:
        print("something happened w'en reading the file")
    except EOFError:
        print("ran out of file")
    except (KeyboardInterrupt, ValueError):
        print("something strange happened")
```

Cleaning Up

- Sometimes you need to make sure that failure-prone code cleans up
- Use the finally clause
 - Guaranteed to be executed
 - Even with return statements
 - Even when exceptions are raised

Example for finally clause

- If we open a file without the if-clause, we are morally obliged to close it
 - Let's say, if you have a long-running process that only needs a file for a little time, you should not hog the file and prevent others from accessing it.

Example for finally clause

```
def harmonic(filename):
    11 11 11
    Assumes that the elements in the file are numbers.
    We return the harmonic mean of the numbers.
    ** ** **
    count = 0
                                                          Return in the try block
    accumulator = 0
    try:
        infile = open(filename, encoding="utf-8")
        for line in infile:
             for words in line.split():
                                                          Return in the handler
                 accumulator += 1/int(words)
                 count += 1
        return count/accumulator
    except ZeroDivisionError:
        print("saw a zero")
                                                               But finally is
        return 100000000
                                                            guaranteed to run
    except ValueError:
                                                             before any of the
        print("saw a non-integer")
                                                                 returns
        return 0
    finally:
        print("I am done and closing the file")
        infile.close()
```

Raising exceptions

- You can also raise your own exception
 - You can even define your own exceptions when you have understood classes
 - Just say: raise ValueError
 - or whatever the exception is that you want to raise.

Self Test

- Recall that the finally clause is always executed.
- What is the output of the following code

```
def raising():
    try:
        raise ValueError
    except ValueError:
        return 0
    finally:
        return 1
```

Answer

- The functions returns 1
 - The exception is raised and control passes to the exception handler
 - Before the exception handler can return, the finally clause is executed
 - And that one returns 1

Multiple Exceptions

- It is common that Python code throws multiple exceptions
 - Can list different exceptions using a tuple and handle them all

```
try:
    client_obj.get_url(url)
except (URLError, ValueError, SocketTimeout):
    client_obj.remove_url(url)
```

• Or write different exception handlers

```
try:
    client_obj.get_url(url)
except (URLError, ValueError):
    client_obj.remove_url(url)
except SocketTimeout:
    client_obj.handle_url_timeout(url)
```

Handles to Exceptions

- Exceptions are classes that have methods
- To gain access use the as keyword

```
try:
    f = open(filename)
except OSError as e:
    if e.errno == errno.ENOENT:
        print('file not found')
    elif e.errno == errno.EACCES:
        print('permission denied')
    else:
        print('unexpected error')
```

Multiple Exceptions

- More than one exception can be triggered
 - The first matching exception handler will handle, even if a more specific exception handler is available

```
try:
    f = open(a_missing_file)
except OSError:
    print('it failed')
except FileNotFoundError:
    print('File not found')
```

prints out 'it failed'

Multiple Exceptions

• Exceptions are in a hierarchy

```
try:
...
except Exception as e:
...
print(e)
```

- catches all exceptions except SystemExit, KeyboardInterrupt, GeneratorExit
- If you want to catch those, change Exception to BaseException

Creating Custom Exceptions

• To create a new exception, just define a class that derives from Exception

class NetworkError(Exception):
 pass
class TimeoutError(NetworkError):
 pass

Creating Custom Exceptions

- If your custom exception overrides the constructor
 - Make sure you call the exception class constructor

```
class CustomError(Exception):
    def __init__(self, message, status):
        self.message = message
        self.status = status
```

 Parts of Python and libraries except all exceptions to have an .args attribute, that will be provided by calling the super

Chaining Exceptions

 Raise an exception in response to catching a different exception, but include information about both exceptions in the traceback

```
def example():
    try:
        int('N/A')
        except ValueError as e:
        raise RuntimeError('A parsing error occured') from e
```

Assertions

- To prevent error conditions, can use assertions
 - E.g.: your code only runs on a linux machine

- If the condition is violated, throws an AssertionError
- But the assert statements are optimized away when

Else Statement

• Else block after a try block is executed only if no exception was raised

Else Statement

 Exceptions in the else block would not be caught by the current try block

```
for arg in sys.argv[1:]:
    try:
        f = open(arg, 'r')
    except OSError:
        print('cannot open', arg)
    else:
        print(arg, 'has', len(f.readlines()), 'lines')
        f.close()
```

Exercises

• The following code is potentially buggy.

```
info = [{'score': 3, 'confidence': 2},
        {'score': -1, 'confidence': 4},
        {'score': 1, 'confidence': 4},
        {'confidence': 0}]

def get_total_score(info):
   total = 0
   for item in info:
        total += item['score']
   return total
```

```
get_total_score(info)
```

Solutions

```
def get_total_score(info):
   total = 0
   number_of_items = 0
   for item in info:
        try:
            total += item['score']
        except KeyError:
            pass
        else:
            number_of_items += 1
   return total/number_of_items
```

print(get_total_score(info))

Exercises

• The following code is potentially buggy.

```
import os
def check(directory):
    for file_name in os.listdir(directory):
        with open(file_name) as infile:
            nr = len(infile.readlines())
            print(file_name, nr)
```

Solutions

```
import os
```

```
def check(directory):
    for file_name in os.listdir(directory):
        try:
            with open(file_name) as infile:
                nr = len(infile.readlines())
                print(file_name, nr)
        except UnicodeDecodeError:
                print('unicode decode error in', file_name)
        except IsADirectoryError:
                print(f'{file_name} is a directory')
```

Use Case

Use Case

- Given experimental data in several files, generate statistics: mean, median, standard deviation, min, max
- First, need to read and understand the files

🚡 fac_xor_100k.rtf	Jul 9, 2021 at 6:37 PM	5 KB	RTF Document
👔 fac_xor_500k.rtf	Jul 9, 2021 at 6:37 PM	5 KB	RTF Document
👔 m1k.rtf	Jul 9, 2021 at 7:33 PM	19 KB	RTF Document
🚡 m1m.rtf	Jul 9, 2021 at 7:33 PM	24 KB	RTF Document
🚡 m2m.rtf	Jul 9, 2021 at 7:33 PM	10 KB	RTF Document
🚡 m3m.rtf	Jul 9, 2021 at 7:33 PM	10 KB	RTF Document
🍃 m4m.rtf	Jul 9, 2021 at 7:33 PM	10 KB	RTF Document
🍃 m5m.rtf	Yesterday at 2:41 PM	10 KB	RTF Document
🍃 m6m.rtf	Jul 9, 2021 at 7:33 PM	10 KB	RTF Document
🍃 m7m.rtf	Yesterday at 2:40 PM	10 KB	RTF Document
🍃 m8m.rtf	Yesterday at 2:39 PM	10 KB	RTF Document
🍺 m9m.rtf	Yesterday at 2:39 PM	10 KB	RTF Document
🔓 m10k.rtf	Jul 9, 2021 at 7:33 PM	21 KB	RTF Document
📔 m10m.rtf	Yesterday at 2:38 PM	10 KB	RTF Document
🍃 m100.rtf	Jul 9, 2021 at 7:33 PM	16 KB	RTF Document
🚡 m100k.rtf	Jul 9, 2021 at 7:33 PM	23 KB	RTF Document
🍃 m500k.rtf	Jul 9, 2021 at 7:33 PM	23 KB	RTF Document
new_mac_1k.txt	Today at 11:57 AM	2 KB	Plain Text
new_mac_1m.txt	Today at 11:57 AM	2 KB	Plain Text
new_mac_2m.txt	Today at 11:57 AM	2 KB	Plain Text
new_mac_3m.txt	Today at 11:57 AM	2 KB	Plain Text

Understanding the File

- We want to extract data from the rtf files
 - Which is a special format with some metadata
 - So, we open up a file and read its contents:

```
with open('m4m.rtf') as infile:
    for line in infile:
        print(line.strip())
```

```
Python 3.9.1 (v3.9.1:1e5d33e9b9, Dec 7 2020, 12:10:52)
[Clang 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license()" for more information.
>>>
= RESTART: /Users/thomasschwarz/Google Drive/AAAResearch/XOR/python/Results/exam
ple.py
{\rtfl\ansi\ansicpg1252\cocoartf2580
\cocoatextscaling0\cocoaplatform0{\fonttbl\f0\fnil\fcharset0 Menlo-Bold;}
{\colortbl;\red255\green255\blue255;\red0\green0\blue0;\red255\green255\blue255;
{\*\expandedcolortbl;;\csgenericrgb\c0\c0\c0;\csgenericrgb\c100000\c10000\c1000
00;}
\paperw11900\paperh16840\marg11440\margr1440\vieww11520\viewh8400\viewkind0
\deftab543
\pard\tx543\pardeftab543\pardirnatural\partightenfactor0
\f0\b\fs22 \cf2 \cb3 400000\
xor: 49345466 12.3364 base: 55607792 13.9019
xor: 49148572 12.2871 base: 54566308 13.6416
xor: 49196259 12.2991
                      base: 55123832 13.781
xor: 48912397 12.2281
                      base: 54718196 13.6795
xor: 49537206 12.3843
                       base: 54457012 13.6143
xor: 49586577 12.3966
                       base: 54948304 13.7371
xor: 49545169 12.3863
                      base: 55384275 13.8461
                       base: 55145634 13.7864
xor: 49583695 12.3959
xor: 49570100 12.3925
                       base: 54998475 13.7496
                       base: 54730946 13.6827
xor: 49518140 12.3795
                       base: 54859949 13.715
xor: 49617350 12.4043
xor: 48713802 12.1785
                       base: 55164290 13.7911
xor: 48164164 12.041
                       base: 57183437 14.2959
xor: 47788420 11.9471
                       base: 57045043 14.2613
```

Understanding the File

- First thing: 'rtf' is good because we do not need to struggle with encoding
- Second: We want to extract the data from the second and fifth column and get statistics about them
- Third: The data is organized into files and the file name gives the parameter. The parameter also appear in the nineth line.

```
with open('m4m.rtf') as infile:
    for _ in range(9):
        line = infile.readline()
        if '4000000' in line:
            print(line)
```

Checking the File

- To open up all the files, we use a for loop
 - This gives us more control then using the os-interface because files might be added to the directory
 - Trick: Just put the part of the filename into a list that changes

Checking the File

- We also want to ensure that the file name and the putative parameter are the same.
 - Write the parameters and the filenames into a list
 - Then in a for, loop over the zip of the two lists

Checking the File

```
numbers = [100, 1000, 10000, 100000, 500000, 10**6, 2*10**6]
3*10**6, 4*10**6,
           5*10**6, 6*10**6, 7*10**6, 8*10**6, 9*10**6,
10*10**61
for filename, number in zip(['100','1k', '10k',
   '100k', '500k', '1m', '2m', '3m', '4m', '5m',
   '6m', '7m', '8m', '9m', '10m'], numbers):
    filename = 'm'+filename+'.rtf'
   with open (filename) as infile:
        for in range(9):
            line = infile.readline()
        if str(number) in line:
            print(f'Processing {filename}.')
        else:
            print(f'Error in {filename}')
```

Extracting the Data

- After the next line, there is data
 - xor: 49345466 12.3364 base: 55607792 13.9019
 xor: 49148572 12.2871 base: 54566308 13.6416
 xor: 49196259 12.2991 base: 55123832 13.781 \
 xor: 48912397 12.2281 base: 54718196 13.6795
 xor: 49537206 12.3843 base: 54457012 13.6143
 xor: 49586577 12.3966 base: 54948304 13.7371
- Extract the second and the fifth column
- This uses split

```
for line in infile:
    contents = line.strip().split()
```

Extracting the Data

• The result is an array with substrings:

['xor:', '721', '7.21', 'base:', '1188', '11.88', '\\']
['xor:', '761', '7.61', 'base:', '1192', '11.92', '\\']
['xor:', '754', '7.54', 'base:', '1008', '10.08', '\\']
['xor:', '640', '6.4', 'base:', '1047', '10.47', '\\']
['xor:', '608', '6.08', 'base:', '1049', '10.49', '\\']
['xor:', '658', '6.58', 'base:', '1049', '10.49', '\\']
['xor:', '679', '6.79', 'base:', '1049', '10.49', '\\']

You might notice the escaped back-slash at the end

Extracting the Data

• We convert the substrings to ints and store them in an array each

```
xor, base = [], []
for line in infile:
    contents = line.strip().split()
    try:
        xor.append(int(contents[1]))
        base.append(int(contents[4]))
        except:
        print(line, 'is causing a problem')
```

- Now we process these numbers
 - We are given an array
 - We want to obtain min, max, mean, median, standard deviation
 - Some of this are built in functions

• Can also use sum on an array

```
def process(numbers):
    mymin = min(numbers)
    mymax = max(numbers)
    mean = sum(numbers)/len(numbers)
```

• Standard Deviation is the average square of the difference between value and mean

stddev = sum([(x-mean)**2 for x in numbers])/len(numbers)

- Median is the middle value if the number of elements is odd
 - and the mean of the two middle numbers if the number of elements is even

```
if len(numbers)%2: #odd number of elements
    median = numbers[len(numbers)//2]
    else: #even number of elements
    median = 0.5*(numbers[len(numbers)//
2-1]+numbers[len(numbers)//2])
```

• Recall: // is integer (or floor) division

• We use a tuple to return all these values

return mymin, mymax, mean, stddev, median

Output the Results

- Now we need to write the results into a file
 - Let's open and close it manually

```
outfile = open('results.csv', 'w')
...
outfile.close()
```
Output the Results

- We write the results into a csv file
- We can just use print, though sometimes formatting is more appropriate
 - Outside the loop

Inside the loop

Output the Results

• The result can be opened up with a default csv reader

					resulto		
number	xmymin	xmymax	xmean	xstdev	xmedian	bmymin	bmymax
100	3.42	8.04	5.19858	309.5306583600000	3.95	9.5	
1000	5.244	9.141	5.80342200000000	319.13307591600000	5.46	8.235	
10000	6.7459	10.2161	7.3201774	5629.705879492400	6.9133	9.5609	1
100000	8.74157	11.17784	9.94255932	42678.05432507380	9.867105	11.67727	1
500000	9.949352	11.313766	10.664554692	48206.61135096460	10.66412	12.06262	14.:
1000000	10.467729	11.521527	11.335300064	57336.42526458790	11.43143	12.534501	14.(
2000000	11.4822405	12.47411	12.059577945000000	224651.085783464	12.1342805	12.4192725	14.4
3000000	11.4614723333333300	12.461902	12.121835006666700	194440.04750069700	12.196676833333300	12.632801333333300	14.518786666
4000000	11.6981935	12.4043375	12.30390774375	64632.295572963600	12.362274875	13.2470055	14.4(
500000	11.361584	12.3409166	12.229062318	111627.96257134000	12.2892755	13.46254	15.0 [.]
600000	12.0191918333333300	12.889517166666700	12.677415187908500	128859.90743770000	12.702532333333300	13.0141476666666700	14.599636666
700000	12.592950571428600	12.934370714285700	12.858827092857100	28261.628152309600	12.874604428571400	13.416018	14.460658428
8000000	12.5974845	12.9809655	12.929097531875	38877.331831551200	12.9591665	13.54018675	14.461(
9000000	12.490178555555600	13.000380222222200	12.9482682	55928.83858088550	12.972452944444400	13.484329222222200	14.684151222
1000000	12.6398721	12.9877319	12.934557254000000	33053.09256567980	12.9546848	13.6929555	14.6

(?) Table data was imported. Adjust Settings

Output the Results

• Clearly, a format string is appropriate.

	results									
number	xmymin	xmymax	xmean	xstdev	xmedian	bmymin	bmymax	bmean	bstdev	bmedian
100	3.420	8.040	5.199	309.531	3.950	9.500	11.930	10.361	108.356	9.620
1000	5.244	9.141	5.803	319.133	5.460	8.235	13.878	10.961	1604.517	10.249
10000	6.746	10.216	7.320	5629.706	6.913	9.561	14.024	11.268	9299.045	11.561
100000	8.742	11.178	9.943	42678.054	9.867	11.677	14.443	12.621	28444.219	12.526
500000	9.949	11.314	10.665	48206.611	10.664	12.063	14.208	13.109	140526.975	13.190
100000	10.468	11.522	11.335	57336.425	11.431	12.535	14.618	13.513	105013.937	13.490
2000000	11.482	12.474	12.060	224651.086	12.134	12.419	14.451	13.538	280371.904	13.500
3000000	11.461	12.462	12.122	194440.048	12.197	12.633	14.519	13.721	381411.220	13.716
4000000	11.698	12.404	12.304	64632.296	12.362	13.247	14.470	13.797	177096.525	13.757
500000	11.362	12.341	12.229	111627.963	12.289	13.463	15.011	14.062	259501.631	14.016
600000	12.019	12.890	12.677	128859.907	12.703	13.014	14.600	13.879	349499.189	13.895
700000	12.593	12.934	12.859	28261.628	12.875	13.416	14.461	13.910	176575.521	13.892
8000000	12.597	12.981	12.929	38877.332	12.959	13.540	14.462	13.953	201241.750	13.937
9000000	12.490	13.000	12.948	55928.839	12.972	13.484	14.684	14.082	235177.200	14.069
1000000	12.640	12.988	12.935	33053.093	12.955	13.693	14.693	14.117	239143.446	14.102

Checking the Results

- Which of these columns does not make sense?
- Where is the error?