
Functions in Python

Python Functions
• Functions defined by keyword def

• Can return value with keyword return

def function_name ()list of arguments :

indent function body

Python Functions
• Example: A Heron square-root function

def square(S, precision):

 """ This is a square root function that uses Heron's Method

 """

 x = 1

 while not -precision < S-x**2 < precision:

 x = 0.5*(x+S/x)

 return x

Python Functions
• Without return:

• Function returns when code is exhausted

• Peculiarities:

• Neither argument nor return types are specified

Python Functions
• This is weird, but legal

• Returns a None value for x = 4

• Returns int for x=1, string for x=2, float for x=3

def example(x):

 if x == 1:

 return 1

 if x == 2:

 return "two"

 if x == 3:

 return 3.0

Simple Examples
• A “fruitless” function that does not return a value:

• Printing the first n square numbers

def first_squares(n):

for i in range(1, n+1):

 print(i**2)

Simple Examples
• A function that returns a power of 2

def power_of_two(x):

 return 2**x

Simple Example
• A function that calculates the th harmonic numbern

def har(n):

 accu = 0

 for i in range(1, n+1):

 accu += 1/i

 return accu

Simple Example
• The harmonic numbers are known to diverge:

• They go to infinity

• Though numeric inaccuracies make it hard to show
this

• Create a function that for returns

•
x ∈ ℝ>0

min({n : Hn > x})

Simple Examples
• To determine the smallest number such that is larger

than :

• Use a while loop

• Keep adding until harmonic number is larger

• The while condition is that the accumulator is
smaller than

Hn
x

x

Simple Example
• while-solution

def min_har(x):

 accu = 0

 i = 0

 while accu < x:

 i+= 1

 accu += 1/i

 return i

Functions of Functions
• Functions are full-fledged objects in Python

• This means you can pass functions as parameters

• Example: Calculate the average of the values of a function
at -n, -n+1, -n+2, …, -2, -1, 0, 1, 2, … , n-2, n-1, n

• The function needs to be a function of one integer
variable

• Example:

• n = 2, function is squaring

• Return value is ((−2)2 + (−1)2 + 02 + 12 + 22)/5 = 2

Functions of Functions
• We first define the averaging function with two arguments

• The number n

• The function over which we average, called func

def averaging(n, func):

Functions of Functions
• Inside the function, we create an accumulator and a loop

index, running from -n to n.

def averaging(n, func):

 accu = 0

 for i in range(-n, n+1):

Functions of Functions
• Inside the loop, we modify the accumulator accu by

adding the value of the function at the loop variable.

def averaging(n, func):

 accu = 0

 for i in range(-n, n+1):

 accu += func(i)

Functions of Functions
• There are 2n+1 points at which we evaluate the function.

• We then return the average as the accumulator over the
number of points

 def averaging(n, func):

 accu = 0

 for i in range(-n, n+1):

 accu += func(i)

return accu/(2*n+1)

Functions of Functions
• In order to try this out, we need to use a function

• We can just define one in order to try out our averaging
function

def square(number):

 return number*number

def averaging(n, func):

 accu = 0

 for i in range(-n, n+1):

 accu += func(i)

return accu/(2*n+1)

print(averaging(2, square))

Local Functions
• Can have a function definition inside a function

• Not many use cases

def factorial(number):

 if not isinstance(number, int):

 raise TypeError("sorry", number, "must be an integer")

 if not number >= 0:

 raise ValueError("sorry", number, "must be positive")

 def inner_factorial(number):

 if number <= 1:

 return 1

 return number * inner_factorial(number-1)

 return inner_factorial(number)

Local and Global Variables
• A Python function is an independent part of a program

• It has its own set of variables

• Called local variables

• It can also access variables of the environment in which
the function is called.

• These are global variables

• The space where variables live is called their scope

• We will revisit this issue in the future

Examples
• a and b are two global

variables

• In function foo:

• a is global, its value
remains 3

• In function bar:

• b is local, since it is
redefined to be 1

a=3

b=2

def foo(x):

 return a+x

def bar(x):

 b=1

 return b+x

print(foo(3), bar(3))

The global keyword
• In the previous example, we generated a local variable b

by just assigning a value to it.

• There are now two variables with name b

• In bar, the global variable is hidden

• If we want to assign to the global variable, then we can
use the keyword global to make b refer to the global
variable. An assignment then does not create a new local
variable, but rather changes the value of the old one.

Example
• In foo:

• A local variable b

• A global variable a

• The value of a changes by executing
foo()

a = 1

b = 2

def foo():

 global a

 a = 2

 b = 3

 print("In foo:" , "a=", a, " b=", b)

print("Outside foo: " ,"a=", a, " b=", b)

foo()

print("Outside foo: " ,"a=", a, " b=", b)

##Outside foo: a= 1 b= 2

##In foo: a= 2 b= 3

##Outside foo: a= 2 b= 2

Scoping
• Global scope:

• Names that we define are visible to all our code

• Local scope:

• Names that we define are only visible to the current
function

Scoping
• LEGB — rule to resolve names

• Local

• Enclosed (e.g. enclosing function)

• Global

• Built-in

Functions with Default
Arguments

• We have created functions that have positional arguments

• Example:

• When we invoke this function, the first argument (2)
gets plugged into variable foo and the second
argument (3) get plugged into variable bar

def fun(foo, bar):

 print(2*foo+bar)

fun(2, 3)

Keyword (Named)
Arguments

• We can also use the names of the variables in the function
definition.

• Example: (we soon learn how to deal better with errors)

def quadratic(a, b, c):

 if b**2-4*a*c >= 0:

 return -b/(2*a) + math.sqrt(b**2-4*a*c)/(2*a)

 else:

 print("Error: no solution")

print(quadratic(1, -4, 4)) #CALL BY POSITION

print(quadratic(c=4, a=1, b=-4) #CALL BY KEYWORD

Keyword (Named) Arguments

• Keyword arguments have advantages

• If you have a function with many positional arguments,
then you need to carefully match them up

• At least, you can use the help function in order to figure
out what each argument does, if you named them well
in the function definition

Keyword (Named) Arguments

• You can force the user of a function to use keywords by
introducing an asterisk into the definition of the function:

• All arguments after the asterisk need to be passed by
keyword

• The arguments before the asterisk can be positional

def function ():* ,posarg1, keywarg1

def fun(a, b, *, c):

 …

print(fun(2, 3, c=5)

Pythonic Tip
• If you want to write understandable code:

• Use keyword arguments

• Use reasonable default values

• Write a documentation

• Three quotation marks followed by remarks followed
by three quotation marks

Default arguments
• You have already interacted with built-in functions that use default

arguments

• Print:

• end: How the string is terminated (default is new-line character)

• sep: What comes between different outputs (default is space)

• file: Location of output (default is “standard output”)

Default Arguments
• Defining default arguments is easy

• Just use the arguments with default arguments last and
assign default values in the function definition

Default Arguments
• How to write readable code:

• Named arguments and default arguments with well-
chosen names make code more readable

• Most effort in software engineering goes towards
maintaining code

Example
• A slightly better square root

def square(S, precision=10**-9):

 """ This is a square root function that uses Heron's Method

 """

 x = 1

 while not -precision < S-x**2 < precision:

 x = 0.5*(x+S/x)

 return x

>>> square(3)

1.7320508075688772

>>>

Example: Numerical
Differentiation

• Numerical Differentiation Formula

•

• Write a function with a small default value for

df
dx

x=x0

= lim
δ→0

f(x + δ) − f(x − δ)
2δ

δ

Example: Numerical
Differentiation

• We want a function that takes a function as an argument
and returns a function

• This is easy in Python

• Inside the function, define a new function and return
it

Example: Numerical
Differentiation

• First things first:

• How do we define the derivative function?

Example: Numerical
Differentiation

• We find f and delta in the scope

• Now we have to define the “exterior” function

def fprime(x):

 return (f(x+delta) - f(x-delta))/(2*delta)

Example: Numerical
Differentiation

• Here is the exterior function

def diff(f, delta):

 def fprime(x):

 return (f(x+delta) - f(x-delta))/(2*delta)

 return fprime

Example: Numerical
Differentiation

• Final step:

• Use a default value for delta

def diff(f, delta=10**-7):

 def fprime(x):

 return (f(x+delta) - f(x-delta))/(2*delta)

 return fprime

Preview: Numerical
Differentiation

• This simple differentiation method is actually quite good

• Let’s draw some graphs, as we will learn in the second
half

• We import two modules that need to be installed with
pip (or pip3 if you also have python2)

Preview: Numerical
Differentiation

• Importing modules

• Creating an array of X-values

• And three different versions of the derivative of sine

import matplotlib.pyplot as plt

import numpy as np

X=np.linspace(0, 2*np.pi, 1001)

df = diff(np.sin, delta=0.1)

df2 = diff(np.sin, delta=0.01)

df3 = diff(np.sin, delta=0.001)

Preview: Numerical
Differentiation

• Then we plot the graphs

• Need an array of X-values and an array of Y-values

• Labels are added for a legend

• Then we create the legend and call show

plt.plot(X, np.sin(X), label='sine')

plt.plot(X, df(X), label='der')

plt.plot(X, np.cos(X), label='cos')

plt.legend()

plt.show()

Preview: Numerical
Differentiation

• When we run this, we get

• Result is so good that we cannot see the difference between
the numerical derivative and the cosine function

Anonymous Functions

• Up till now, we used the def-construct in order to define
functions

• Sometimes it is necessary to pass functions to another
function, but not necessary to define the argument for
future uses

Anonymous Function
• Example:

• Numerical Differentiation

• Derivative of a function f at a point is the slope of the tangent

• Approximated by a secant

X x+δx-δ

y=f(x)

f(x-δ)

f(x+δ)

Slope of the secant is
(f(x+δ) - f(x-δ))/(2δ)

Anonymous Functions
• The slope of the secant is

the difference of values
over the difference of
arguments:

• If δ is small, then this is a
good approximation of the
derivative

X x+δx-δ

y=f(x)

f(x-δ)

f(x+δ)

Slope of the secant is
(f(x+δ) - f(x-δ))/(2δ) f(x + δ) − f(x − δ)

x + δ − (x − δ)
=

f(x + δ) − f(x − δ)
2δ

Anonymous Functions
• A simple method for derivation uses a fixed, but small

value for δ.

• To test this, we try it out with sine, whose derivative is
cosine

def derivative(function, x):

 delta = 0.000001

 return (function(x+delta)-function(x-delta))/(2*delta)

for i in range(20):

 x = i/20

 print(x, math.cos(x), derivative(math.sin, x))

Anonymous Functions
• It turns out that the numerical derivative is quite close in

this test
0.0 1.0 0.9999999999998334

0.05 0.9987502603949663 0.9987502603940601

0.1 0.9950041652780257 0.9950041652759256

0.15 0.9887710779360422 0.9887710779310499

0.2 0.9800665778412416 0.9800665778519901

0.25 0.9689124217106447 0.9689124216977207

0.3 0.955336489125606 0.9553364891112803

0.35 0.9393727128473789 0.9393727128381713

0.4 0.9210609940028851 0.9210609939747094

0.45 0.9004471023526769 0.9004471023255078

0.5 0.8775825618903728 0.8775825618978494

0.55 0.8525245220595057 0.8525245220880606

0.6 0.8253356149096783 0.8253356149623414

0.65 0.7960837985490559 0.7960837985487856

0.7 0.7648421872844885 0.7648421873063249

0.75 0.7316888688738209 0.7316888688824186

0.8 0.6967067093471655 0.6967067094354462

0.85 0.6599831458849822 0.6599831459119798

0.9 0.6216099682706645 0.6216099682765375

0.95 0.5816830894638836 0.5816830894733727

Anonymous Functions
• Notice that in the test, we specified math.sin and not

math.sin(x),

• The former is a function (which we want)

• The latter is a value (which we do not want)

for i in range(20):

 x = i/20

 print(x, math.cos(x), derivative(math.sin, x))

Anonymous Functions
• To specify a function argument, I can use a lambda-

expression

• Lambda-expressions were used in Mathematical Logic to
investigate the potential of formal calculations

• Lambda expression consists of a keyword lambda

• followed by one or more variables

• followed by a colon

• followed by an expression for the function

• This example implements the function

lambda x : 5*x*x-4*x+3

x → 5x2 − 4x + 3

Anonymous Functions
• To test our numerical differentiation function, we pass it

the function , which has derivative x → x2 2x

for i in range(20):

 x = i/20

 print("{:5.3f} {:5.3f} {:5.3f}”.format(

x,

derivative(lambda x: x*x, x),

2*x))

Anonymous Functions
• Since we are rounding to only three digits after the

decimal point, we get perfect results
0.000 0.000 0.000

0.050 0.100 0.100

0.100 0.200 0.200

0.150 0.300 0.300

0.200 0.400 0.400

0.250 0.500 0.500

0.300 0.600 0.600

0.350 0.700 0.700

0.400 0.800 0.800

0.450 0.900 0.900

0.500 1.000 1.000

0.550 1.100 1.100

0.600 1.200 1.200

0.650 1.300 1.300

0.700 1.400 1.400

0.750 1.500 1.500

0.800 1.600 1.600

0.850 1.700 1.700

0.900 1.800 1.800

0.950 1.900 1.900

Anonymous Functions
• I can even use lambda expressions as an alternative way

of defining functions:

• Since there are two variables, norm is a function of two
arguments:

norm = lambda x, y: math.sqrt(x*x+y*y)

print(norm(2.3, 1.7))

Annotations
• Completely optional way to make function definitions

easier to read

• Uses swift language convention

• for arguments: name colon type

• where type is either a Python type or a string

• for return value: use ->

def quadratic(a: 'number', b: 'number', c: 'number') -> float :

 disc = (b**2-4*a*c)**0.5

 return (-b+disc)/(2*a)

Decorators
• Functions are also return values

• One way to use this are decorators (for the future)

• A decorator is put on top of a function

• The decorator then takes the function and replaces it
with another function

Decorators
• This is an example of a function factory!

• We can automatically apply the decorator

def my_decorator(func):

 def wrapper():

 print("Something is happening before the function is called.")

 func()

 print("Something is happening after the function is called.")

 return wrapper

def say_namaste():

 print("Namaste!")

say_when = my_decorator(say_whee)

@my_decorator

def say_namaste():

 print("Namaste!")

Decorators
• Some decorators are provided in modules

• lru_cache in functools

• stores the result of functions in an lru cache

Future topics on functions
• Memoization

• Decorators

In Class Exercises
• From the easy to the hard

1. Write a function of no arguments that prints out an
empty line, followed by "Namaste" or "Viva la
revolución" or "Laudate Dominum"*, followed by an
empty line

* According to your preference

Solution
• Python 3 allows the use of unicode characters

def one():

 print()

 print('Namaste')

 print()

def one():

 print()

 print('नमस्ते ')

 print()

def one():

 print()

 print('LAUDATEDOMINUM ')

 print()

def one():

 print()

 print('¡Viva la revolución!')

 print()

In Class Exercises
• Write a function that calculates the median of three

numbers

• E.g. median(2,3,4) return 3, median(1,0,10) returns 1

In Class Exercises
def median(a, b, c):

 if a<=b<=c or c<=b<=a:

 return b

 elif a<=c<=b or b<=c<=a:

 return c

 else:

 return a

In Class Exercises

• Define a function using a lambda

expression

x → x2 +
1

x2 + 1

In Class Exercises

func = lambda x: x**2+1/(1+x**2)

In Class Exercises
• Write a function of a function and

arguments a and b that calculates

• This is the trapezoid formula that

approximates

f

1
2

(f(a) + f(b))(b − a)

∫
b

a
f(x)dx 0.5 1.0 1.5 2.0

1

2

3

4

5

In Class Exercises

def trap(f, a, b):

 return 0.5*(f(a)+f(b))*(b-a)

>>> trap(lambda x: x**2+1/(1+x**2), 1, 2)

2.85

In Class Exercises
• Write a function that prints out a checker board of n by n

fields

>>> checker(4)

*** ***

*** ***

 *** ***

 *** ***

*** ***

*** ***

 *** ***

 *** ***

>>> checker(8)

*** *** *** ***

*** *** *** ***

 *** *** *** ***

 *** *** *** ***

*** *** *** ***

*** *** *** ***

 *** *** *** ***

 *** *** *** ***

*** *** *** ***

*** *** *** ***

 *** *** *** ***

 *** *** *** ***

*** *** *** ***

*** *** *** ***

 *** *** *** ***

 *** *** *** ***

In Class Exercises
def checker(n):

 fields = n//2

 for _ in range(fields):

 for i in range(2):

 print(fields*(3*'*'+3*' '))

 for i in range(2):

 print(fields*(3*' '+3*'*'))

Strings in Python
Thomas Schwarz, SJ

Strings
• Basic data type in Python

• Strings are immutable, meaning they cannot be changed

• Why?

• It’s complicated, but string literals are very frequent.
If strings cannot be changed, then multiple
occurrences of the same string in a program can be
placed in a single memory location.

• More importantly, strings can serve keys in key-
value pairs.

String Literals
• String literals are defined by using quotation marks

• Example:

• To create strings that span newlines, use the triple
quotation mark

Escapes
• Python is very good at detecting your intentions when

processing string literals

• E.g.: "It's mine"

• Still sometimes need to use the escape character

• \t, \n, \", \', \\, \r

• \xhh —> character with hex value 0xhh

• Python 3 uses machine conventions for endings

• Python 3 uses utf-8 natively

• greetings = ("शुभ प्रभात", "સુપ્રભાત", "शुभ प्रभात")

Docstrings
• Doc strings

• String literals that appear as the first line of a module,
function, class, method definition

• All these items should have a docstring

• The docstring replaces the help string in Idle and
IPython/Jupyter

• Indent them under the indentation of the object they
describe

Docstrings
• Always use triple quotation marks

• Even for one-liners

Docstrings
• Example

String Methods
• Strings are classes and have many built in methods

• s.lower(), s.upper() : returns the lowercase or
uppercase version of the string

• s.strip(): returns a string with whitespace removed
from the start and end

• s.isalpha() / s.isdigit() / s.isspace()
tests if all the string chars are in the various character
classes

• s.startswith('other'), s.endswith('other')
tests if the string starts or ends with the given other string

String Methods
• There are a number of methods for strings. Most of them

are self-explaining

• s.find('other') : searches for the given other
string (not a regular expression) within s, and returns the
first index where it begins or -1 if not found

• s.replace('old', ‘new'): returns a string where
all occurrences of 'old' have been replaced by 'new'

• len(s) returns the length of a string

Strings and Characters
• Python does not have a special type for characters

• Characters are just strings of length 1.

Accessing Elements of
Strings

• We use the bracket notation to gain access to the
characters in a string

• a_string[3] is character number 3, i.e. the fourth
character in the string

String Processing
• Since strings are immutable, we process strings by

turning them into lists, then processing the list, then
making the list into a string.

• String to list: Just use the list-command

String Processing
• Turn lists into strings with the join-method

• The join-method has weird syntax

• a_string = "".join(a_list)

• The method is called on the empty string ""

• The sole parameter is a list of characters or strings

• You can use another string on which to call join

• This string then becomes the glue
gluestr.join([str1, str2, str3, str4, str5])

str1 str2 str3 str4 str5gluestr gluestr gluestr gluestr

String Processing
• Examples

String Processing
• Procedure:

• Take a string and convert to a list

• Change the list or create a new list

• Use join to recreate a new string

• Alternative Procedure:

• Build a string one by one, using concatenation (+ -operator)

• Creates lots of temporary strings cluttering up memory

• Which is bad if you are dealing with large strings.

