Python for Data
Science

Overview of Python
Why Python
Installing Python
Installing Python Modules

Overview of the course

e Assumptions:
 We are here to learn some new skills
 We learn new skills by doing
* We work better with others
 Python is important
* |tis a glue language
* Need minimal python skills to use
* |t is interesting on its own
e |t's a modern language with interesting features

e |t's useful where-ever modules don't exist

Python

 Python is an interpreted (scripting) language

 Source code is compiled into a bytecode
representation

* Executed by Python virtual machine (usually
implemented in C or Java)

e |f performance is needed:
 Can call C-code from Python

e Use PyPy with Just-In-Time compilation (JIT)

Python

e Why Python:
e Cool language
 Extensible through modules
o Statistics
* Machine learning

e Graphics

Python

e Getting Python
e Can use bundles (anaconda)
* For the first half: get native Python from Python.org
e Python 2.7 stable solution (built into MacOS)

* Python 3.9.1 the version | am using

e |Important : Allow automatic path adjustments on
windows

e This are the defaults

Python

e Using Python:
e We are going to use IDLE
e (Can create and safe scripts

e Can interact directly in the IDE

Python 3 Modules

* Python comes with many pre-installed modules
* \We need later to install some modules
e Use Pip
e MacOS / Linus
* |n a shell:
thomasschwarz@Peter-Canisius Modulel % python3.9 -m pip install matplotlib
e \Windows:

e |n a command window

py —-3.9 —-m pip 1nstall matplotlib

Why Python

* Universal, accessible language

e (Clear and simple syntax

 Python philosophy: The frequent should be easy

* Made for reading

e Used for fast prototyping

e Excellent support community

 Help for beginners and experts is easily available

Why Python

e Universal Language
e Serves many different constituencies
e Examples:

e Gaming: Al engine is usually in Python

e String processing: Basis for digital humanities and data wrangling

e Many extension modules
e With scypy or numpy, fast programs for scientific programming
e Use pyplot for good quality graphics

 Notebooks based on Python (Jupyter) integrate presentation, data,
and programs

Why Python

* Python in Data Science

KDnuggets Analytics, Data
Science, Machine Learning Software
Poll, 2016-2018

0% 10% 20% 30% 40% 50% 60% 70%

| | | | | | |

Python 6%

RapidMiner
R

SQL

0,
By %share

0,
Anaconda %share

Tensorflow %share
Tableau
scikit-learn

Keras

Apache Spark

Why Python

e https://youtu.be/pKPaHH7hnv8

Python Modules

\ ,\\\\\\\~\ 7y 7

"
..,, /
\\\\\\\ 7y

4
\\\\\\

17 -
1) % YN
o, &\\\\\

77, DTV

\\\\

%

7

FeE 2
g¥ wwmw o
mw/fom&m(ww
M BNMW H o
SEY Ig30 L
I.i...clu _W,nm Wmm
T
= <<
~. ||G.IW¢ —_ =
meamm% 3
“W?. NMMAHWW% Wuﬁn
S mmmwa o &3
=26 mmwww B
WMW O ==z J
HO X QN\A

URE FLYING!

0

.

/

T LEARNED ITLAST

NIGHT! EVERYTHING

1S SO SIMPLE !

"

’

/

HELLO WORLD 1S JUST
print "Hello, world

Why Python

e Example:
 Time series data: closing prices of four stock indices
e given as a cvs file
 Use Pandas in order to deal with two dimensional data

 Use matplotlib for graphics

Why Python? Time Series
Example

 |mport the modules

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

 |mport the cvs file as a pandas dataframe

raw data = pd.read csv('Index2018.csv')
values = raw data.copy ()

e The first column should be the index, read as a date
values.date = pd.to datetime (values.date, dayfirsts=
values.set index("date", 1inplace = True)
print (values.describe ())
print (values.head())

Why Python? Time Series
Example

e Fill in missing values and normalize to start at 100

values.spx values.spx.fillna (method

= 'ffill') /values.spx['1994-01-07"'1*100.0
values.dax = values.dax.fillna (method

'ffill') /values.dax['1994-01-07"]*100.0

* Now display the US Standard & Poor and the German

DAX

values.spx.plot (label="S&P")
values.dax.plot (label="DAX")

e Now annotate the plot and show it

plt.title('S&P v DAX')
plt.xlabel ("date')
plt.ylabel ('Price')
plt.legend()
plt.show ()

Why Python? Time Series

O igure
e Result: -

600 4 —— S&P

DAX
500 A /
{ ﬁﬂ' l"
400 - K -
\

Q
L
a ff

300 - }‘M / M p

A uf\,ﬂ k
200 - w/ ! \ *
100 //
© Q N S ©
X 2P 2P A° N 20>
date

Why Python

* Most of the programming was done for us
* Needed to invoke powerful method

 Majority of the code giving to small tweaks

IDLE

@ IDLE File Edit Shell Debug Options Window Help

. . . [NON) Python 3.6.5 Shell
e |IDLE Is an interactive Python [Python 3.6.5 (13.6.5: 159083204, Mar 28 2018, 03:03:55)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

. Type "copyright", "credits" or "license()" for more information.
>>>

Interp reter RESTART: /Users/thomasschwarz/Google Drive/AATeaching/Python 2/Programs/pi.py
1 0.7831
>>>

RESTART: /Users/thomasschwarz/Google Drive/AATeaching/Python 2/Programs/pi.py

0.7807

* Can be used as a desk - —
calculator

* Allows you to create new
files

Ln: 11 Col: O

Python Syntax

Variables and lypes

e All program languages specify how data in memory
locations is modified

* Python: A variable is a handle to a storage location
* The storage location can store data of many types
* |ntegers
* Floating point numbers
 Booleans

e Strings

Variables and lypes

* Assignment operator = makes a variable name refer to a memory

location

e Variable names are not declared and can refer to any legitimate type

a = 3.14150432

b = Ya string”

Q< -eee e » 3.14156432
[- memee e » “a string”

a = b

a.. 3. 32
b’ “a string”

Create two variables and assign
values to them

Variable a is of type floating point
and variable b is of type string

After reassigning, both variable
names refer to the same value

The floating point number is garbage
collected

EXpressions

 Python builds expression from smaller components just
as any other programming language

* The type of operation expressed by the same symbol
depends on the type of operands

* Python follows the usual rules of precedence

e and uses parentheses in order to express or clarify
orders of precedence.

EXpressions

* Arithmetic Operations between integers / floating point
numbers:

 Negation (-), Addition (+), Subtraction (-), Multiplication
(*), Division (/), Exponentiation (**)

e Integer Division //

e Remainder (modulo operator) (%)

EXpressions

* |F we use / between two integers, then we always get a
floating point number

e |f we use // between two integers, then we always get an
integer

e a//bis the integer equal or just below a/b

EXpressions

e Strings are marked by using the single or double
quotation marks

* You can use the other quotation mark within the string

e Some symbols are given as a combination of a forward
slash with another symbol

e Examples: \t for tab, \n for new line, \’ for apostrophe,
* for double quotation mark, \\ for backward slash

e We’'ll get to know many more, but this is not the topic
of today

EXpressions

e Strings can be concatenated with the +

* They can be replicated by using an integer and the ™ sign

e Examples:
® “gbc"+"def" —> Tabcdef'
PY ‘abc\"'+'fg' —> 'abc"fg'

PY B*IIHiVH _> \\HivHivHiv"

Change of Type

Python allows you to convert the contents of a variable or
expression to an expression with a different type but
equivalent value

 Be careful, type conversation does not always work

To change to an integer, use int ()
To change to a floating point, use float ()

To change to a string, use str ()

Example

e Input is done in Python by using the function input

* |nput has one variable, the prompt, which is a string

 The result is a string, which might need to get processed by
using a type conversion (aka cast)

 The following prints out the double of the input (provided
the user provided input is interpretable as an integer), first
as a string and then as a number

user_input = input("Please enter a number ") Please enter a number 23
print(2*user_input) 2323
print(2*intCuser_input))

46

Example

 Python does not understand
English (or Hindi) so giving it |>>> intctwo™

‘Traceback (most recent call last):

a humber Iin other than File "<pyshell#5>", line 1, in <module>

int("two")

SymbO“C form doeS nOt help ValueError: invalid literal for int() with base 10: 'two'

>>> float("123")

0 123.0
e |t can easily understand >> 1nt(24)
“1 23!! >SS |

e |t does not complain about
the expression having the
same type.

Conditional Statements

e Sometimes a statement (or a block of statements) should
only be executed if a condition is true.

e Conditional execution is implemented with the if-
statement

e Form of the If-statement:

1f | | Condition

4P Statement
one

indent

Conditional Statements

if | Condition

P Statement

one
indent

e if — isakeyword
 Condition: a Boolean, something that is either True or False
e Statement: a single or block of statements, all indented

* Indents are tricky, you can use white spaces or tabs, but not both.
Many editors convert tabs to white spaces

* The number of positions for the indent is between 3 and 8,
depending on the style that you are using. Most important, keep it
consistent.

Example

@ ® p2.1.py - /Users/thomasschwarz/Goog|

a = int(input("a number, please: "))
a < 5:
print("that is a small number.™)

* First line asks user for integer input.
e Second line checks whether user input is smaller than 5.

* |n this case only, the program comments on the number.

Example

O ® p2.1.py - /Users/thomasschwarz/Google Drive/AATeaching/Ahmédabad/SoIutions/...

a = int(input("a number, please: "))
a <= 0:
a=-a
print("The absolute value of your number is", a)

 Here we calculate the absolute value of the input.
 The third line is indented.

 The fourth line is not, it is always executed.

Example

O @® p2.1.py - /Users/thomasschwarz/Google Drive/AATeaching/Ahmedabad/Solutions/...

a = int(input("a number, please: "))
a <= 0:
a= -a
print("This is a negative number™)
print("Thanks for using our program.")

e Here, lines 3 and 4 are indented and are executed if the
iInput is a negative integer.

* The last line, line 5, Is always executed since it is not part
of the if-statement

Alternative statements

* Very often, we use a condition to decide which one of
several branches of execution to pursue.

e The else-statement after the indented block of an if-

statement creates an alternative route through the
program.

Alternative Statements

* The if-else statement has the following form:

i £ | | condition |

P Statement Block 1
one

indent

else

P Statement Block 2
one

e We add the keyV\i/ncc;?nct:! else, followed by a colon

e Then add a second set of statements, indented once

e |f the condition is true, then Block 1 is executed,
otherwise, Block 2.

Examples

* | can test equality by using the double = sign.

e To check whether a number n is even, | take the
remainder modulo 2 and then compare with 0.

O @® p2.2.py - /Users/thomasschwarz/Google Drive/AATeaching/Ahmedabad/Solutions/...

number = int(input("Enter a number: "))
Lf number%2 ==0:
print("The number is even.")
print("Its square is", number**2)

print("The number is odd.")
print("Its square-root is", number**@.5)

Alternative Statements

e Often, we have more than two alternative streams of
execution.

e |nstead of nesting if expressions, we can just use the
keyword “elif”, a contraction of else If.

Alternative Statements

1f

Condition 1

P Statement Block 1

once

indent

’elif

| Condition 2 |

4P Statement Block 2

one

indent

else

P Statement Block n

one

indent

e One of the statement
blocks is going to be
executed

e The else block contains
the default action, if
none of the conditions
are true

Alternative Statements

if‘ Condition 1 ‘ :

P Statement Block 1
one
indent
elifl Condition 2 ‘ :
P Statement Block 2
one
indent
elif Condition n
P Statement Block n
one

indent

e Here, there Is no else
statement, so it is
possible that none of
the blocks Is executed.

Examples

e (Categorization of temperatures

1f temperature < -25.0:
feeling = "arctic"
elif temperature < -10.0:
feeling = "Wisconsin 1in winter"
eli1f temperature < 0.0:
feeling = "freezing"
eli1f temperature < 15.0:
feeling = "cold"
eli1f temperature < 25.0:
feeling = "comfortable"
eli1f temperature < 35.0:
feeling = "hot"
eli1f temperature < 45.0:
feeling = "Ahmedabad in the summer"
else:
feeling = "hot as 1n hell"

Boolean Expressions

* Nested loops to implement decision tree:

if x<10: No S\ ¥) ves
1f y<3:
1f x<2:
result=0
else: No € ¥<2 Yes No Yes
result=1
else: J —1 [—— |
result=0 result = 0 rosult = 1 resuit =0
else:
1f y<2: No Yes

result=1
else result=0

Exercises

e Use IDLE to calculate the following expressions:

2+ 19

e What is the remainder of 22" when dividing by 57?

Exercises

e \What is the result of
cat = '123506"

o
2*cat

e and why?

Exercises

* Write a program that asks the user for an amount in Euros
and converts the result to Indian Rupees.

* As of the writing, one Euro corresponds to
87.92489314 Indian Rupees

Solution

e Open ldle and select File->New File
* This opens up a new window
* Write your code in this window and save the file

* Then execute the Python script by using the F5 short-cut
or by selecting Run->Run Module

Solution

user 1input = input ('Enter an amount in Euros: ')
euros = float (user 1input)

print ('The amount 1n Indian Rupees 1s ',
euros*87.92489314)

Loops

Thomas Schwarz, SJ

Conditions

A condition is an expression that evaluates to True or
False

* This type is called Boolean

Boolean Expressions

e The simplest Boolean expressions are True and False

* The next simplest class are numerical comparators

< smaller

> greater

== equals (Two! equal symbols)
= not equals

<= smaller or equal

>= larger or equal

@
Python 3.6.5 (v3.6.5:f59c(

. [GCC 4.2.1 (Apple Inc. bu
| Type "copyright", "credit:
I>>> a =5

>>> a 1=2%2
True

>>> a != 2+3
False

>>> a<b

True

>>> a>/
False

>>>

Boolean Expressions

* We can combine Boolean expressions using the logical
operands

e and
e OFr
e Not

* |f necessary, we can add parentheses in order to specify
precedence

Boolean Expression
Examples

* A program that decides whether user input is divisible by
2, but not by 3.

T T T T T -
x = int(input("Please enter a number: "))
X%2==0 x%3==0:
A

print("The number is divisible by two, but not by three")

print("The number is not divisible by two or it is divisible by three.™)

O ® Python 3.6.5 Shell

Python 3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, ©3:03:55)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "copyright", "credits" or "license()" for more information.

>>>

RESTART: /Users/thomasschwarz/Documents/My website/Classes/Module4/example.py
Please enter a number: 5
The number is not divisible by two or it is divisible by three.

>>>

RESTART: /Users/thomasschwarz/Documents/My website/Classes/Module4/example.py
Please enter a number: 6
The number is not divisible by two or it is divisible by three.

>>>
RESTART: /Users/thomasschwarz/Documents/My website/Classes/Module4/example.py
Please enter a number: 4
The number is divisible by two, but not by three
>>>

Boolean Expression
Example

e A program that checks whether the letter “a”, “A”, “e” or “E” is part of
user input.

 Python allows the keyword “in” to check for the presence of letters in
strings.

user_input = input("Please enter a string: ")

a user_input "A' user_input "e" user_input "E" user_input:
print("present")

print("not present")

O © Python 3.6.5 Shell

Python 3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, 03:03:55)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "copyright", "credits" or "license()" for more information.
>>>
RESTART: /Users/thomasschwarz/Documents/My website/Classes/Module4/example2.py
Please enter a string: retiuyert
present
>>>
RESTART: /Users/thomasschwarz/Documents/My website/Classes/Module4/example2.py
Please enter a string: rtiuyirtuy
not present
>>>

Short-Circuit Operators

e The value of an “or”- or “and” expression is evaluated
from the left to the right

e |f the first operand of an “or” is True, then the second
operand is not evaluated and True is returned.

* This is because the value of the expression is already
kKnown

e Similarly, if the first operand of an “and” expression is
False, then the second operand is not evaluated and
the value of the expression is False.

Conversion of other
expressions

 Any object can be tested for a truth value.

e The truth value of a non-zero number is True, otherwise False.

>>> 5%2 :

* Example: orint("5 is odd™)

5 1s odd

e Since 5%2 evaluates to 1, it’s truth value is True and the
conditional statement (print (..)) is executed

e This behavior extends to other type of objects such as strings

e The empty string “” has truth value 0, every other string has
truth value 1.

Loops

* In CS: two types of for-loops

e Using an index as in C, C++, Java

for(int 1 = 0; 1 < 10; 1i++)

e Using lists as in Lisp

* (loop for x in '"(a b c d e)
do (print x))

* Python for loops iterate through an 'iterator’

Loops

 Jo repeat a block of statements, use

for 1 1n range (n) :

- Indent >

Block of Statements

Loops

Range used to generate a list, but is now a generator
e Like a list, but values are generated only on demand
range with a single variable: variable is the stop value

range (5) (0,1,2,3,4]

range allows a start value:

range (2, 5) [2,3,4]

range allows a stride:

range (2,10, 3) (2,5, 8]
range (10,1, -3) [(10,7,4]

Loops

e Examples:
100
, Calculate Z i2=1%2+2%+ ... +99% + 1002
i=1

e Use an accumulator to get the sum

def sum of squares(limit : 1int) -> 1int:
accu = 0
for 1 in range(l, limit+1l):
accu += 1*1
return accu

Notice that the

sum includes 100

Loops

e Example: Count-down

for 1 1n range (10, -1, -1):
print (1)

O

O N WD OToy J 00 O

Loops

e Calculating the factorial
n

n!=Hi=1-2-3-...-(n—1)-n

=1

accu = 1

for 1 1n range(l, n+1l):
accu *= 1

return accu

Calculating Sums

 For loops are handy to calculate mathematical sums

e (Geometric series:

1 1 1 1 1 |
e Calculate 2—+§+§+§+?+ ﬁ
e Determine iterator needs to run from 0 to 10
(inclusive)

® for 1 1n range(1ll):
e Need to accumulate fractions in a sum

e Just don’t call it “sum”, because “sum” has
another meaning

Calculating Sums
1S

accu = 0
1 in range(11):
accu += 1/2%**1
print(accu)

O ® Python 3.6.5 Shell

Python 3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, 03:03:55)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "copyright", "credits" or "license()" for more information.
>>>

RESTART: /Users/thomasschwarz/Google Drive/AATeaching/Ahmedabad/Solutions/geome
tric.py

1.9990234375

>>>

Calculating Sums

 Admittedly, we could have used Mathematics instead

e Thesumis1.1111111111 in binary.

e Add 1/2**100r 0.0000000001 In binary and we
get 2.

e Thus,thesumis2 - 1/2**10

Drawing Pictures

i in range(@,6):

e We can use the index In print((5-1)%" "+2%{*"* 748"

i in range(5,-1,-1):

a for loop in order to Primt((5-)%" "42Win"* 1)
draw contours

: © Python 3.6.5 S
Python 3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018,

e The trick is to use [GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on

Type "copyright", "credits" or "license()" for

string repetition

RESTART: /Users/thomasschwarz/Google Drive/AA

instead of drawing Vo,

u st
each line separately.
% 3 ok ok ok Kk ok
A 3k ok ok ok ok ok ok
& 3k ok ok ok ok ok ok kK
3 3k ok ok ke ok ok ok kK
3 ok ok ok ok ok Kk ok
A 3 %k ok Ak Kk
A& %k %k
* %k K
H

>>>

Drawing
Pictures

for 1 in range(8):

~

ror

j in range(2):
pr‘int(4*(4*" ”+4*||*"))

for j in range(2):

|

Print(4*(4*"*"+4%" "))

* % % * % %k %* % %k %* % %k
* % %k * % %k * % %k %* % %k
* % %k * % % * % %k %* % %k
* %k % * %k % * %k %k * % %

>>>

Python 3.6.5 Shell

RESTART: /Users/thomasschwarz/Google Drive/AATeachi

Py

%* %k %k %k * % %k %k * % % %k * % %k %k
* %k %k %k %* % %k %k * % %k %k * % % %k
* %k Xk % * %k k% % % % %k % % %k %
* %k Xk % * %k Xk % * %k k% % %k %k %k
% % %k % % % %k %k * %k %k % * %k %k %
& % %k % %* %k %k % %* % %k % * % %k %k
* %k %k % * %k %k % * %k %k % & % %k %k
* %k %k % * %k %k % * %k %k % & % %k %
% % %k % %* % %k % * % %k % * % %k %
% % %k % %* % %k % * % %k % * % %k %
* % %k % * %k %k % * %k %k % & % %k %
* %k %k % * %k %k % & %k %k %k & %k %k %k
% %k %k % %* % %k %k * %k %k % * %k %k %
% %k %k %k * % %k %k * % %k %k * % %k %k
* %k %k % * %k %k % A& % %k %k % %k %k %k
* %k %k % * %k Xk % % %k %k %k % %k %k %k
%k %k %k %k * % %k %k * % %k %k * %k %k %
* % %k %k * %k %k %k * %k %k %k * %k %k %k
* %k %k % * %k %k % * %k %k % & % %k %k
* %k %k % * %k %k % * %k %k % & %k %k %
* % %k % * % %k % % % %k % * % %k %
% % %k % * % %k % * % %k % * % %k %
* %k %k % * %k %k % * %k %k % & %k %k %
* %k %k % * %k %k % * %k %k % & %k %k %k
% %k %k % %* % %k % * %k %k % % % %k %
% % %k %k * % %k % * % %k % * % % %k
* %k %k % * %k %k % & %k %k %k & %k %k %k
* %k %k % * %k k% A& %k %k %k A& % %k %
% %k %k %k * % %k % * %k %k %k * %k %k %k
%* % %k %k * % %k %k * %k % %k * %k %k %k
* %k Xk % * %k Xk % * %k k% % % %k %k
* %k %k % * %k %k % * %k %k % & % %k %

>>>

While Loops

e Form of the while loop:

while condition :

- -+ Statement Block
Indent

e Keyword is while
e Condition needs to evaluate to either True or False

e Condition is a boolean

While Loop Conditions

e Statement block is executed as long as condition is valid.

* Allows the possibility of infinite loops

Apple Inc.

One Infinite Loop
Cupertino, CA 95014
(408) 606-5775

while condition :

- - Statement Block
Indent

An Infinite Loop

while True:

print (“Hello World”)

If this happens to you, you might have to Kkill Idle process.

While Loops can emulate
for loops

* Find an equivalent whlle loop for the following for-loop

e (which calculates Z

1/—1

n = 1nt (i1nput ("Enter n: "))
suma = 0
for 1 1n range(l,n+1l):

suma += 1/1

rint ("The", n, "th harmonic number 1s", sum)
©

While loops can emulate for
loops

e Solution: the loop-variable / has to start out as 1 and then
needs to be incremented for every loop iteration

* We stop the loop when i/ reaches n+1, i.e. we continue as
long as / <=n.

n = int (input ("Enter n: "))
sum = 0
i=1

while i<= n:
sum += 1/1
i+=1
print ("The", n, "th harmonic number 1is", sum)

Harmonic Numbers

— 1
e The nth harmonic number is hn — Z —
U
v=1
e |tis known that this series diverges.

* Given a positive number x, we want to determine n such
that the nth harmonic number is just above x

min({n|h, > x})

|
e Solution: add = while you have not reached x

Harmonic Numbers

x = float (input ("Enter x: "))
nu = 1
sum = 0

while sum <= X:
sum += 1/nu

nu += 1
print ("The number you are looking for is ", nu-1,
"and 1incidentally, h n =%, sum)

* When we stop, we need to undo the last increment of nu,
but not for sum.

Breaking out of a while loop

* You break out of a while loop, if the condition in the while
loop Is False

 Or by using a statement
e break Dbreaks out of the current loop
e Can be used in for loops as well
* A related statement is the continue statement

e continue breaks out of the current iteration of the
loop and goes to the next

e We’ll learn them in the course of the classes.

Example

* Find a number that fulfills the following congruences

x =2 (mod 3)
x =3 (mod 5)
x =2 (mod 7)

 Thisis Sun-Tsu’s problem and the Chinese
Remaindering Theorem in Mathematics helps with
solving these problems.

Example

e We try out all numbers between 1 and 3 X5 X 7
 We check each number whether they fulfill the congruences

e |f we find one, we print it out and break out of the while
loop.

x =1
while x < 3*5*7;
1f x%3==2 and x%5==3 and x%7/==2:
print (x)
break
X += 1

While Loops

 break: stop the execution of the loop

e continue: stop the execution of the current iteration and
go back to the evaluation of the loop condition

e (Stupid) Example: Print out all even numbers from 1 to
100

for 1 in range(l, 101):
1f 1%2==1:
continue
print (1)

While Loops

* A frequent pattern:
e Have an infinite while loop

e Break out If a certain condition is true

While Loops

 Else clause (an example that Python is not perfect)

e Executed if a break is not taken

while condition :
~ ™

break

else :

While Loops

 Else clause example:

for n in [2,3,4,5,0,7,8,20,21,22,23,24]:
for p 1in range (2, n):

if p*(n//p) == n: # p devides n
print(n,'=', p, '*', n//p)
break

else:

print (n, 'is prime')

* Notice: 'else' belongs to the inner for, not the if statement

Exercises

e Use finer and finer sums in order to calculate

1
1
J x3dx = —
0 4

Solution

We divide the interval [0,1] into N subintervals of size 1/N

i3

iSﬁ

0 i+ 1)
The minimum of the function in the subinterval ,
N N |
. o . 1
We multiply this with the length of the subinterval N and add up
to get
. 3
- N> N

as a lower estimate for the integral.

Solution

N = 10000000
suma = 0
for 1 1n range (N) :

suma += 1**3/N**4

print (suma)

