
Python for Data
Science
Overview of Python

Why Python

Installing Python

Installing Python Modules

Overview of the course
• Assumptions:

• We are here to learn some new skills

• We learn new skills by doing

• We work better with others

• Python is important

• It is a glue language

• Need minimal python skills to use

• It is interesting on its own

• It's a modern language with interesting features

• It's useful where-ever modules don't exist

Python
• Python is an interpreted (scripting) language

• Source code is compiled into a bytecode
representation

• Executed by Python virtual machine (usually
implemented in C or Java)

• If performance is needed:

• Can call C-code from Python

• Use PyPy with Just-In-Time compilation (JIT)

Python
• Why Python:

• Cool language

• Extensible through modules

• Statistics

• Machine learning

• Graphics

Python
• Getting Python

• Can use bundles (anaconda)

• For the first half: get native Python from Python.org

• Python 2.7 stable solution (built into MacOS)

• Python 3.9.1 the version I am using

• Important : Allow automatic path adjustments on
windows

• This are the defaults

Python
• Using Python:

• We are going to use IDLE

• Can create and safe scripts

• Can interact directly in the IDE

Python 3 Modules
• Python comes with many pre-installed modules

• We need later to install some modules

• Use Pip

• MacOS / Linus

• In a shell:

• Windows:

• In a command window

thomasschwarz@Peter-Canisius Module1 % python3.9 -m pip install matplotlib

py -3.9 -m pip install matplotlib

Why Python
• Universal, accessible language

• Clear and simple syntax

• Python philosophy: The frequent should be easy

• Made for reading

• Used for fast prototyping

• Excellent support community

• Help for beginners and experts is easily available

Why Python
• Universal Language

• Serves many different constituencies

• Examples:

• Gaming: AI engine is usually in Python

• String processing: Basis for digital humanities and data wrangling

• Many extension modules

• With scypy or numpy, fast programs for scientific programming

• Use pyplot for good quality graphics

• …

• Notebooks based on Python (Jupyter) integrate presentation, data,
and programs

Why Python
• Python in Data Science

Why Python

• https://youtu.be/pKPaHH7hnv8

Python Modules

Why Python
• Example:

• Time series data: closing prices of four stock indices

• given as a cvs file

• Use Pandas in order to deal with two dimensional data

• Use matplotlib for graphics

Why Python? Time Series
Example

• Import the modules

• Import the cvs file as a pandas dataframe

• The first column should be the index, read as a date

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

raw_data = pd.read_csv('Index2018.csv')

values = raw_data.copy()

values.date = pd.to_datetime(values.date, dayfirst=True)

values.set_index("date", inplace = True)

print(values.describe())

print(values.head())

Why Python? Time Series
Example

• Fill in missing values and normalize to start at 100

• Now display the US Standard & Poor and the German
DAX

• Now annotate the plot and show it

values.spx.plot(label='S&P')

values.dax.plot(label='DAX')

values.spx = values.spx.fillna(method = 'ffill')/values.spx['1994-01-07']*100.0

values.dax = values.dax.fillna(method = 'ffill')/values.dax['1994-01-07']*100.0

plt.title('S&P v DAX')

plt.xlabel('date')

plt.ylabel('Price')

plt.legend()

plt.show()

Why Python? Time Series
Example

• Result:

Why Python
• Most of the programming was done for us

• Needed to invoke powerful method

• Majority of the code giving to small tweaks

IDLE
• IDLE is an interactive Python

interpreter

• Can be used as a desk
calculator

• Allows you to create new
files

Python Syntax

Variables and Types
• All program languages specify how data in memory

locations is modified

• Python: A variable is a handle to a storage location

• The storage location can store data of many types

• Integers

• Floating point numbers

• Booleans

• Strings

Variables and Types
• Assignment operator = makes a variable name refer to a memory

location

• Variable names are not declared and can refer to any legitimate type

a 3.14156432

b “a string”

a = 3.14156432
b = “a string”

a = b

a 3.14156432

b “a string”

• Create two variables and assign
values to them

• Variable a is of type floating point
and variable b is of type string

• After reassigning, both variable
names refer to the same value

• The floating point number is garbage
collected

Expressions
• Python builds expression from smaller components just

as any other programming language

• The type of operation expressed by the same symbol
depends on the type of operands

• Python follows the usual rules of precedence

• and uses parentheses in order to express or clarify
orders of precedence.

Expressions
• Arithmetic Operations between integers / floating point

numbers:

• Negation (-), Addition (+), Subtraction (-), Multiplication
(*), Division (/), Exponentiation (**)

• Integer Division //

• Remainder (modulo operator) (%)

Expressions
• IF we use / between two integers, then we always get a

floating point number

• If we use // between two integers, then we always get an
integer

• a//b is the integer equal or just below a/b

Expressions
• Strings are marked by using the single or double

quotation marks

• You can use the other quotation mark within the string

• Some symbols are given as a combination of a forward
slash with another symbol

• Examples: \t for tab, \n for new line, \’ for apostrophe,
\“ for double quotation mark, \\ for backward slash

• We’ll get to know many more, but this is not the topic
of today

Expressions
• Strings can be concatenated with the +

• They can be replicated by using an integer and the * sign

• Examples:

• “abc"+"def" —> 'abcdef'

• ‘abc\"'+'fg' —> 'abc"fg'

• 3*”Hi'" —> “Hi'Hi'Hi'"

Change of Type
• Python allows you to convert the contents of a variable or

expression to an expression with a different type but
equivalent value

• Be careful, type conversation does not always work

• To change to an integer, use int()

• To change to a floating point, use float()

• To change to a string, use str()

Example
• Input is done in Python by using the function input

• Input has one variable, the prompt, which is a string

• The result is a string, which might need to get processed by
using a type conversion (aka cast)

• The following prints out the double of the input (provided
the user provided input is interpretable as an integer), first
as a string and then as a number

Example
• Python does not understand

English (or Hindi) so giving it
a number in other than
symbolic form does not help

• It can easily understand
“123”

• It does not complain about
the expression having the
same type.

Conditional Statements
• Sometimes a statement (or a block of statements) should

only be executed if a condition is true.

• Conditional execution is implemented with the if-
statement

• Form of the if-statement:

if Condition :

Statement
one
indent

Conditional Statements

• if — is a keyword

• Condition: a Boolean, something that is either True or False

• Statement: a single or block of statements, all indented

• Indents are tricky, you can use white spaces or tabs, but not both.
Many editors convert tabs to white spaces

• The number of positions for the indent is between 3 and 8,
depending on the style that you are using. Most important, keep it
consistent.

if Condition :

Statement
one
indent

Example

• First line asks user for integer input.

• Second line checks whether user input is smaller than 5.

• In this case only, the program comments on the number.

Example

• Here we calculate the absolute value of the input.

• The third line is indented.

• The fourth line is not, it is always executed.

Example

• Here, lines 3 and 4 are indented and are executed if the
input is a negative integer.

• The last line, line 5, is always executed since it is not part
of the if-statement

Alternative statements
• Very often, we use a condition to decide which one of

several branches of execution to pursue.

• The else-statement after the indented block of an if-
statement creates an alternative route through the
program.

Alternative Statements
• The if-else statement has the following form:

• We add the keyword else, followed by a colon

• Then add a second set of statements, indented once

• If the condition is true, then Block 1 is executed,
otherwise, Block 2.

if Condition :

Statement Block 1
one
indent

else :

Statement Block 2
one
indent

Examples
• I can test equality by using the double = sign.

• To check whether a number n is even, I take the
remainder modulo 2 and then compare with 0.

Alternative Statements
• Often, we have more than two alternative streams of

execution.

• Instead of nesting if expressions, we can just use the
keyword “elif”, a contraction of else if.

Alternative Statements

• One of the statement
blocks is going to be
executed

• The else block contains
the default action, if
none of the conditions
are true

if Condition 1 :

Statement Block 1
one
indent

else :

Statement Block n
one
indent

elif Condition 2 :

Statement Block 2
one
indent

.

.

.

Alternative Statements
• Here, there is no else

statement, so it is
possible that none of
the blocks is executed.

if Condition 1 :

Statement Block 1
one
indent

elif Condition 2 :

Statement Block 2
one
indent

.

.

.
elif Condition n :

Statement Block n
one
indent

Examples
• Categorization of temperatures

if temperature < -25.0:

 feeling = "arctic"

elif temperature < -10.0:

 feeling = "Wisconsin in winter"

elif temperature < 0.0:

 feeling = "freezing"

elif temperature < 15.0:

 feeling = "cold"

elif temperature < 25.0:

 feeling = "comfortable"

elif temperature < 35.0:

 feeling = "hot"

elif temperature < 45.0:

 feeling = "Ahmedabad in the summer"

else:

 feeling = "hot as in hell"

Boolean Expressions
• Nested loops to implement decision tree:

x<10

y<2 y<3

No Yes

result = 0 result = 1 result = 0

No Yes No

x<2

Yes

result = 1

No

result = 0

Yes

if x<10:

 if y<3:

 if x<2:

 result=0

 else:

 result=1

 else:

 result=0

else:

 if y<2:

 result=1

 else result=0

Exercises
• Use IDLE to calculate the following expressions:

•

• What is the remainder of when dividing by 5?

2 + 19
5 − 2

(= 7)

220

Exercises
• What is the result of

•

• and why?

cat = '12356'

2*cat

Exercises
• Write a program that asks the user for an amount in Euros

and converts the result to Indian Rupees.

• As of the writing, one Euro corresponds to
87.92489314 Indian Rupees

Solution
• Open Idle and select File->New File

• This opens up a new window

• Write your code in this window and save the file

• Then execute the Python script by using the F5 short-cut
or by selecting Run->Run Module

Solution
user_input = input('Enter an amount in Euros: ')

euros = float(user_input)

print('The amount in Indian Rupees is ',
euros*87.92489314)

Loops
Thomas Schwarz, SJ

Conditions
• A condition is an expression that evaluates to True or

False

• This type is called Boolean

Boolean Expressions
• The simplest Boolean expressions are True and False

• The next simplest class are numerical comparators

• < smaller

• > greater

• == equals (Two! equal symbols)

• != not equals

• <= smaller or equal

• >= larger or equal

Boolean Expressions
• We can combine Boolean expressions using the logical

operands

• and

• or

• not

• If necessary, we can add parentheses in order to specify
precedence

Boolean Expression
Examples

• A program that decides whether user input is divisible by
2, but not by 3.

Boolean Expression
Example

• A program that checks whether the letter “a”, “A”, “e” or “E” is part of
user input.

• Python allows the keyword “in” to check for the presence of letters in
strings.

Short-Circuit Operators
• The value of an “or”- or “and” expression is evaluated

from the left to the right

• If the first operand of an “or” is True, then the second
operand is not evaluated and True is returned.

• This is because the value of the expression is already
known

• Similarly, if the first operand of an “and” expression is
False, then the second operand is not evaluated and
the value of the expression is False.

Conversion of other
expressions

• Any object can be tested for a truth value.

• The truth value of a non-zero number is True, otherwise False.

• Example:

• Since 5%2 evaluates to 1, it’s truth value is True and the
conditional statement (print(…)) is executed

• This behavior extends to other type of objects such as strings

• The empty string “” has truth value 0, every other string has
truth value 1.

Loops
• In CS: two types of for-loops

• Using an index as in C, C++, Java

• Using lists as in Lisp

• Python for loops iterate through an 'iterator'

* (loop for x in '(a b c d e)

 do (print x))

for(int i = 0; i < 10; i++)

Loops
• To repeat a block of statements, use

for i in range(n):

Block of StatementsIndent

Loops
• Range used to generate a list, but is now a generator

• Like a list, but values are generated only on demand

• range with a single variable: variable is the stop value

• range allows a start value:

• range allows a stride:

range(5) [0,1,2,3,4]

range(2,5) [2,3,4]

range(2,10,3) [2,5,8]

range(10,1,-3) [10,7,4]

Loops
• Examples:

• Calculate

• Use an accumulator to get the sum

100

∑
i=1

i2 = 12 + 22 + … + 992 + 1002

def sum_of_squares(limit : int) -> int:

 accu = 0

 for i in range(1, limit+1):

 accu += i*i

 return accu

Notice that the
sum includes 100

Loops
• Example: Count-down

for i in range(10, -1, -1):

	 print(i)

10

9

8

7

6

5

4

3

2

1

0

Loops
• Calculating the factorial

 n! =
n

∏
i=1

i = 1 ⋅ 2 ⋅ 3 ⋅ … ⋅ (n − 1) ⋅ n

 accu = 1

 for i in range(1, n+1):

 accu *= i

 return accu

Calculating Sums
• For loops are handy to calculate mathematical sums

• Geometric series:

• Calculate

• Determine iterator needs to run from 0 to 10
(inclusive)

• for i in range(11):

• Need to accumulate fractions in a sum

• Just don’t call it “sum”, because “sum” has
another meaning

1
20

+
1
21

+
1
22

+
1
23

+
1
24

+ … +
1

210

Calculating Sums

Calculating Sums
• Admittedly, we could have used Mathematics instead

• The sum is 1.1111111111 in binary.

• Add 1/2**10 or 0.0000000001 in binary and we
get 2.

• Thus, the sum is 2 - 1/2**10

Drawing Pictures
• We can use the index in

a for loop in order to
draw contours

• The trick is to use
string repetition
instead of drawing
each line separately.

Drawing
Pictures

While Loops
• Form of the while loop:

• Keyword is while

• Condition needs to evaluate to either True or False

• Condition is a boolean

while condition :
Statement Block

Indent

While Loop Conditions
• Statement block is executed as long as condition is valid.

• Allows the possibility of infinite loops

while condition :
Statement Block

Indent

Apple Inc.

One Infinite Loop

Cupertino, CA 95014

(408) 606-5775

An Infinite Loop
while True:

print(“Hello World”)

If this happens to you, you might have to kill Idle process.

While Loops can emulate
for loops

• Find an equivalent while loop for the following for-loop

• (which calculates)
n

∑
ν=1

1
ν

n = int(input("Enter n: "))

suma = 0

for i in range(1,n+1):

 suma += 1/i

print("The", n, "th harmonic number is", sum)

While loops can emulate for
loops

• Solution: the loop-variable i has to start out as 1 and then
needs to be incremented for every loop iteration

• We stop the loop when i reaches n+1, i.e. we continue as
long as i <= n.

n = int(input("Enter n: "))

sum = 0

i = 1

while i<= n:

 sum += 1/i

 i += 1

print("The", n, "th harmonic number is", sum)

Harmonic Numbers
• The nth harmonic number is

• It is known that this series diverges.

• Given a positive number x, we want to determine n such
that the nth harmonic number is just above x

• Solution: add while you have not reached x

hn =
n

∑
ν=1

1
ν

min({n |hn > x})

1
ν

Harmonic Numbers

• When we stop, we need to undo the last increment of nu,
but not for sum.

x = float(input("Enter x: "))

nu = 1

sum = 0

while sum <= x:

 sum += 1/nu

 nu += 1

print("The number you are looking for is ", nu-1,

 "and incidentally, h_n =“, sum)

Breaking out of a while loop
• You break out of a while loop, if the condition in the while

loop is False

• Or by using a statement

• break breaks out of the current loop

• Can be used in for loops as well

• A related statement is the continue statement

• continue breaks out of the current iteration of the
loop and goes to the next

• We’ll learn them in the course of the classes.

Example
• Find a number that fulfills the following congruences

• This is Sun-Tsu’s problem and the Chinese
Remaindering Theorem in Mathematics helps with
solving these problems.

x ≡ 2 (mod 3)
x ≡ 3 (mod 5)
x ≡ 2 (mod 7)

Example
• We try out all numbers between 1 and

• We check each number whether they fulfill the congruences

• If we find one, we print it out and break out of the while
loop.

3 × 5 × 7

x = 1

while x < 3*5*7:

 if x%3==2 and x%5==3 and x%7==2:

 print(x)

 break

 x += 1

 
While Loops

• break: stop the execution of the loop

• continue: stop the execution of the current iteration and
go back to the evaluation of the loop condition

• (Stupid) Example: Print out all even numbers from 1 to
100

for i in range(1, 101):

	 if i%2==1:

	 	 continue

	 print(i)

 
While Loops

• A frequent pattern:

• Have an infinite while loop

• Break out if a certain condition is true

 
While Loops

• Else clause (an example that Python is not perfect)

• Executed if a break is not taken

while

else :

condition :

break

 
While Loops

• Else clause example:

• Notice: 'else' belongs to the inner for, not the if statement

for n in [2,3,4,5,6,7,8,20,21,22,23,24]:

 for p in range(2, n):

 if p*(n//p) == n: # p devides n

 print(n,'=', p, '*', n//p)

 break

 else:

 print(n, 'is prime')

Exercises
• Use finer and finer sums in order to calculate

∫
1

0
x3dx =

1
4

Solution
• We divide the interval [0,1] into N subintervals of size 1/N

• The minimum of the function in the subinterval is

• We multiply this with the length of the subinterval and add up

to get

•

• as a lower estimate for the integral.

[i
N

,
i + 1

N] i3

N3

1
N

N−1

∑
i=0

i3

N3

1
N

Solution

N = 10000000

suma = 0

for i in range(N):

 suma += i**3/N**4

print(suma)

