Probability &
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Overview

o Statistics is the lifeblood of data science

e You need to learn how to use statistics

 But the calculations are implemented in two powerful
Python modules

* scipy.stats

e statsmodels



Probability

* We concentrate on categorical data

e (Categorical data is discrete: e.g. "not infected”,

"Infected, but no symptoms”, "sick", "recovered”,
"dead"

e (Categorical data can be ordinal :
e number of cases in Milwaukee County
e (Categorical data can be nominal :

e Republican, Democrat, Other, Non-affiliated



Probability Distributions for
Categorical Data

e Binomial distribution:

 Given a binary characteristic (yes/no) and a sample /

population of n what is the probability that 1 have the
characteristics

* |f we assume that the presence of the characteristic Iin
one individual is independent of the characteristic of
another individual

n!

pbinom(y’ 1, 7[) — Jty(l — ﬂ)(”—Y)
yiy=n)!




In Python

e |Let's run an experiment:
e Select an element of a population with probability p

e Count how many population member are selected

 Then normalize to get the probability that x members are
selected

def run trials(runs, pop size, pP):

results = np.zeros((pop size+l))
for 1n range(runs):
seen = len([x for x 1n

np.random.rand (pop size) 1f x < p])
results|[seen]+=1
return results/runs



In Python

* Then compare with the binomial probability

* binom.pmf is the probability mass function

NN ko1 =k
(k)p(l p)

from scilipy.stats 1mport binom

results = run trials(runs, pop size, p)
xvalues = np.arange (0, len(results))
binom.pmf (xvalues, pop size, p)




In Python

100 runs : Prediction and experimental results differ
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In Python

1000 runs: getting better
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In Python

e 1,000,000 runs
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Morale

e Small numbers means large uncertainty

* For obtaining probabilities experimentally:
* Needto
e Estimate confidence

 Otherwise, you do not know how significant your
results are and cannot distinguish between
casuality and causality

e Use enough samples



Likelihood Estimation

* Problem: Given data, can we say something about the underlying
probability distribution

 Thought experiment: Throw a fair coin 10 times
e HHHHHHHHHH isequally likelythanHHTTHTTHHT
 Why do we think the first one is fishy and the second one not?

e \We use a statistics (number of heads) and assume that coin is
fair

e Observing 10 heads has probability 2~ = 0.0009765625
e Observing 5 heads and 5 tails has probability

10 (1)5(1)5—024609375
5 /)27 27 7



Likelihood Estimation

* Reversely

e Given a sample and a putative probability &

e Likelihood:

e What is the probability given i to observe a statistics
on the sample



Likelihood Estimation

e Assume a binominally distributed random variable
e How do we estimate & from a sample?

e Likelihood: Given &, what is the chance to observe
what we have seen

e Observed: x outof n

* Probability that this happens is

! _ |
Py = 2 ' D} k(1 Z
n!




In Python

e Example: observed 30 out of 100

def likelihood(x, pop size):
prob = np.linspace(0,1,1000)
likelihood = binom.pmf (x, pop size, prob)

fig = plt.figure ()
ax = plt.axes /()

ax.set xlabel ("Probability")

ax.set ylabel ("Frequency")

ax.plot (prob, likelihood)
fig.savefig("{}{}.pdf".format (x,pop size)



In Python

e Example: observed 30 out of 100
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Binomial Distribution

e Likelihood is maximized for 7z = 30/100

e Formally:
e X(x:p) — max
e const - p*(1 — p)"™ — max
* which implies by differentiation that
o« xp* (1 =p)'"™ = (n=x)p*(1 = p)"*"' =0

e X(I —p)=@m—x)p

op=_
n



Binomial Distribution

 Therefore: Maximum Likelihood estimator for & given x
out of n observations is

X

n



Getting Statistics



First Step : Visualize

e Example: Heights




Second Step: Get Stats

e Statistic: any type of measure taken on a sample
* |Implemented in scipy.stats

e Random number generation in np.random



Sample Generation

e Use np.random
 Returns samples for many different distributions
e E.Q.

e np.random.normal (mean, std,
size=1000)

e np.random.gamma (shape, scale,
size=1000)

e Can use numpy.random.seed (12345)to insure
same behavior



Getting Statistical Measures

 Use scipy.stats
 Has many different distributions
e scipy.stats.norm is a distribution object

e Has a pdf, a cdf, ...



Getting Statistic Measures

def stats|():
np.random.seed (6072001)
samplel = create beta(alpha = 1.5, beta = 2)
fig = plt.figure()
ax = plt.axes()
ax.set xlabel ("Values")
ax.set ylabel ("Frequency")
ax.hist (samplel, bins = 20)
fig.savefig('betald 2'")
print (f'mean 1s {np.mean (samplel) }')
print (f 'median 1s {np.median (samplel) }')
print (£'25% quantile 1s {scipy.stats.scoreatpercentile (samplel, 25)
print (£'75% quantile 1s {scipy.stats.scoreatpercentile (samplel, /5)

(
( )
(
print (f'st. dev. 1s {np.std(samplel)}')
(
(

}
Fh)
print (f'skew 1s {sclpy.stats.skew(samplel) }')

print (f'kurtosis 1s {scilpy.stats.kurtosis (samplel) } ')



Getting Statistic Measures

20




Getting Statistic Measures

 Many statistical descriptors are available:

mean 1s 0.44398507464612896

median 1s 0.42091200120073147

25% quantile 1s 0.2421793406556383
715% quantile 1s 0.6277333146506446
st. dev. 1s 0.24067438845525105
skew 1s 0.24637036296183917
kurtosis 1s -0.933113268968349



Getting Statistical Measures

e (Can also fit to distributions
e Example: Height data

e Usenorm.fit

from scipy.stats 1mport norm

popl = np.array([151.765, 156.845, 163.83, 168.91,
le5.1, 151.13, 163.195, 157.48, 161.29, 1l46.4,
1477.955, 161.925, 160.655, 151.765, 162.8648,
171.45, 154.305, 146.7,

loc, std = norm.fit (popl)



Getting Statistical Measures

 Jo display the data:
e Create bins for a histogram
bins = np.linspace (135, 180, 46)
* We need the centers later on

binscenter = np.array ([ (bins[i]+bins[i+1]) /2
for 1 1n range(len(bins)-1)])

* Numpy has a function that calculates a histogram

dt = np.histogram(popl, bins) [0]



Getting Statistical Measures

e dt contains the number of elements in a bin
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Getting Statistical Measures

* We now determine mean and standard deviation using
the fit function

loc, std = norm.fit (popl)

print (loc, std)

e We could do the same using np.mean and np.std



Getting Statistical Measures

* We now create a normal distribution object with this mean
and this standard deviation

pdf = norm(loc, std) .pdf



'O 'O O O

Getting Statistical Measures

* Now, we draw both the histogram and the pdf

 The pdf has an integral of 1, so we multiply with the
number of elements in the population

lt.figure ()
lt.bar (binscenter,
lt.plot (binscenter,

lt.show ()

dt, width = bins[1l]-bins[0])
len (popl) *pdf (binscenter), 'red')



Getting Statistical Measures

25 A

20 A

|1
I |
d
.

5_

0_

170

140 150 160 180



Getting Statistical Measures

e Question:

e Does the red curve
fit the blue?

25 A

20 A

e Visual inspection is
inconclusive 151

e SO, we use 10
statistical tests

140 150 160 170 180



Statistical Tests



Statistical Tests

o Statistical test calculates a value — the test statistics —
from a sample in order to refute or confirm a hypothesis

* Formulate a null hypothesis

 This is usually the boring stuff: two samples from the

same distribution, mean is where it is expected to
be, ...

e (Calculate the probability that the observed statistics or

a more significant result has occurred given the null
hypothesis

e |f the probability is small: reject the null hypothesis



Statistical Tests

Alpha — measures the confidence as a = 1—confidence

e Typicalare a = 0.05, a = 0.01

Critical value — point at which we start rejecting the null
hypothesis

P-value — probability of the observed outcome (or
something more significant) under the null hypothesis

We reject if the p-value is below o

WARNING: while used, this is somewhat controversial
among statisticians



Statistical Tests

e Create two samples,

e Beta distributed witha = 1.5 and f = 2

e Normally distributed with 4 = 0.5 and 6 = 0.25

I sample |
0 sample ll




Statistical Tests

* Jo test whether two means are equal:

e z-test: Assumes two normally / Gaussian distributions
with same standard deviation

e Zero Hypothesis: The means are equal

. X—HU
, Z-scoreis z =
0/\/;

e Use statsmodels

* WARNING: population should be at least 30




Statistical Tests

e Example:

print ('z-score\n',
statsmodels.stats.weightstats.ztest (samplel, xZ2=None,
value = 0.5))

e Result:

Z—sScore
(=3.672599393379993, 0.00024009571884724942)

 Again, reject zero hypothesis



Statistical Tests

e Compare the two samples

statsmodels.stats.weightstats.ztest (
samplel,
sample?Z,
value = 0,
alternative='two-sided'

)

Z—score
(-4.611040794712781, 4.0005789390516926e-00)



Statistical Tests

e Student t-test:
e Assumes Gaussian distribution
e Works for different variances

e Can use for smaller samples



Statistical Tests

e Example: One sample t-test

print (scipy.stats.ttest lsamp (samplel, 0.5))

Ttest lsampResult (statlistic=-3.672599393379993,
pvalue=0.0002938619482386932)

e Two sample t-test

print (scipy.stats.ttest ind(samplel, sample2))

Ttest 1ndResult(statistic=-4.611040794712781,
pvalue=5.0995747086364474e-006)



Statistical Tests

 This is just a sample of important tests



Statistical Tests

* |tis much safer to talk with a statistician than drawing
conclusions yourself

* Python makes sure that you make no calculational errors
* But it cannot assure that you are using the right test

 E.g. you might be making an assumption that is not
warranted

e Also: interpreting confidence levels is not so simple

e a = (.01 still means 1% of your results draw the
wrong conclusion



Contingency Tables



Contingency tables

 EXxperiments to measure effects of causes on outcomes
e Example:
e TJest two machine learning algorithm on ten data sets

 Can we say that classifier 2 is better or could this be
chance?

Correct Incorrect Totals
Classifier 1

Classifier 2

Totals




Contingency Tables

e Other example: treatment versus control

 Does Aspirin help against cardiovascular disease (1988)

myocardial

infarction

Placebo 189

Aspirin 104 10933 11037

Total 293 21778



Contingency Tables

e Usually have
e explanatory variables (Aspirin)

* response variables (Disease)



Contingency Tables

e Type | error:
e We report an effect when there is none
e Type Il error:

 We do not report an effect even though there is one



Contingency Tables

* There are many possible statistics

* More, if the number of observations is high



Contingency Tables

. myocardial
e Number of different in‘;arction

statistical tests

Placebo 189 10845

e Built into statsmodels
Aspirin 104 10933 11037

Total 293 21778

Estimate SE LCB UCB p-value
Odds ratio 1.832 1.440 2.331 0.000
Log odds ratio 0.0605 0.123 0.365 0.846 0.000
Risk ratio 1.818 1.433 2.306 0.000
Log risk ratio 0.598 0.121 0.360 0.835 0.000



Contingency Tables

rm;ocatr_dial none total
° Odds: Placebo 189 10845 11034
189 Aspirin 104 10933 11037
. If we take a placebo, odds are fotal 293 21778
10845
104
. |If we do not take a placebo, odds are
10933
e The statistic looks at the ratio of the odds:
189 - 10933
0 = = 1.832
104 - 10845

e |f there would be no influence, then we expect 8 = 1.



Contingency Tables

e Log odds

* The statistics for odds are heavily skewed

e Easier to use log(f) which can be approximated with a
normal distribution



Contingency Tables

e Relative risk

e 771 probability of success for group one

e T, probability of success for group two

...
Relative risk iIs —
T

* Depends on how we define success because in general
TT| |l —xn

V%) 1—71'2



Contingency Tables

myocardial

e Exam ple: infarction
Placebo 189 10845 11034

e Estimate relative risk from observations g 104 10938 11057

- 189/11034
104/11037

none total

= 1.817802

o U



Contingency Tables

 Again, log of risk is easier to approximate



Contingency Tables

e statsmodels.Table2x2 gives all four values together with a
p-value

* The risk and log risk ratio statistics are not symmetric, so
by transposing, you get different values



Contingency Table

import numpy as np

import matplotlib.pyplot as plt

from statsmodels.stats.contingency tables 1mport
Table2x?

ct = TableZ2x2 ([ [25, 280], [45, 405]])
print (ct.summary())

| Estimate SE  LCB UCB p-value

Odds ratio 0.804 0.482 1.341 0.403
Log odds ratio -0.219 0.261 -0.731 0.293 0.403
Risk ratio 0.820 0.514 1.307 0.404

Log risk ratio -0.199 0.238 -0.666 0.268 0.404



Contingency Tables

For small samples, we should use Fisher's exact test

* |f there is no influence of the explanatory variables,
then the numbers in the cells are distributed according
to a hyper-geometric distribution

 With Python, we can apply this even to larger samples

Use fisher_exact in scipy.stats



Contingency Tables

e (alling Fisher's exact method

sclpy.stats.fisher exact(table))

e Qutput is value of the statistics and the p-value

(1.8320539419087136, 5.0328355997918638e-07)

 Again, we conclude that the difference between Aspirin
and Placebo are unlikely to have happened by chance



Contingency Tables

Lung Cancer Cases Controls

Smoker

Non-smoker




Contingency Tables

Lung Cancer Cases Controls

Smoker
Non-smoker 59

Estimate SE LCB UCB p-value

Odds ratio 2.974 1.787 4.949 0.000
Log odds ratio 1.090 0.260 0.580 1.599 0.000
Risk ratio 1.959 1.352 2.839 0.000
Log risk ratio 0.672 0.189 0.301 1.043 0.000



Contingency Tables

Right Handed Left Handed

Male
Female

Estimate SE LCB UCB p-value
Odds ratio 0.434 0.124 1.517 0.191
Log odds ratio -0.834 0.638 -2.084 0.417 0.191
Risk ratio 0.902 0.7706 1.049 0.18]
Log risk ratio -0.103 0.077 =-0.254 0.048 0.18



Contingency Tables



Contingency Tables



Testing for Normality



Normality Tests

* A large number of models assume that data is or close to
normally distributed

e |f data comes from normal distribution:
e |ots of statistical tricks available

e |f data comes from another distribution:
e Maybe use "non-parametic” methods

e Use tests to determine whether a given set of data is likely to
come from a normal distribution

e Step 1:

e Use a histogram or scatter-plot of the data



Normality Tests

* | created two arrays of length 250
e With my birth date as the seed for reproducabillity
* First, | create histograms (with default settings)

def show(array, name) :
fig = plt.figure()
ax = plt.axes|()
ax.set xlabel ("Values™)
ax.set ylabel ("Frequency")
ax.hist (array)
fig.savefig(name)



Normality Tests

e Results are:

e | eft: not syraru:metric (skew is positive)

* Right: shape does not look quite right (kurtosis)



Normality Tests

* Quantile-Quantile Plot

e Quantile g: Proportion g of the data set fall below the
point

e Example: 30% or 0.3 quantile: 30% of the points are
below, 70% of the points are above

* Plot two data-sets to compare whether they come from
the same distribution

* Plot one data-set. If linear: suggests normal distribution



Normality Tests

 QQ-Plot part of statsmodels package

e Used with numpy, scipy, or pandas and pyplot

import statsmodels.apl as sm

def showqgqg(array, name) :

fig = sm.qggplot (np.array(array), line='s")
fig.savefig (name)

e |ine will draw a 45° line to compare with normal
distribution



Sample Quantiles

Normality Tests

Results:
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Normality Tests

e Statistical tests:
e Takes data and calculates a test statistics

e Calculates the probability of the test value assuming that a nuli
hypothesis is true

* |f the probability is too small, concludes that the null hypothesis
s false

* |n Scipy:
* Null hypothesis: "Distribution is normal®

* Returns a p-value

e |f p-value is smaller than a : reject the Null Hypothesis, otherwise
see it supported by data



Normality Tests

e Shapiro Wilk Test:

(Zl 1

Zl 1(x —x)2

Calculates a test statistics W =

where x; ordered sample values

a. constants from covariance, variance, mean of sample

 For small samples, not so good

e W-distribution is calculated via Monte-Carlo simulation



Normality Tests

e Use scipy.stats.shapiro
* |nput is the data

e Qutput is the W-value and the p-value

import scipy.stats

def getshapiro (array) :
return scipy.stats.shapilro (array)



Normality Tests

e Results:

(0.9899240732192993, 0.08035389333963394)
(0.9923275709152222, 0.22104869782924652)

| ooks valid, normalcy cannot be rejected at the 0.05 level



Normality Tests

e D'Agostino's k” test:
 |Looks at skew and curtosis of the normal distribution
* Implemented in scipy.stats as normaltest
def get dagostino(array) :

return scilpy.stats.normaltest (array)

e Results:

statisti1c=3.7394424212691764, pvalue=0.15416663584307644
statist1c=2.821146323808743, pvalue=0.24400338961897727)

* Null hypothesis cannot be rejected



Normality Tests

 Anderson Darling
e Comes from the Kolmogorov Smirnov test

o KS tests for the distance between the cumulative
probability of two samples or one sample with a
reference distribution
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Normality Tests

* Anderson-Darling lives in scipy.stats
print ('Anderson Darling: {}'.format (

scipy.stats.anderson (samplel)))
print ('Anderson Darling: {}'.format (

scilpy.stats.anderson (sample?2)))
* Prints out statistics with different significance levels
Anderson Darling: AndersonResult (statistic=1.998061561955467,

critical values=array([0.567, 0.040, 0.775, 0.904, 1.075]),
significance level=array([1l5. , 10. , 5. , 2.5, 1. ]))

Anderson Darling: AndersonResult (statistic=1.0717930773325293,

critical values=array([0.567, 0O0.040, 0.775, 0.904, 1.075]),
significance level=array([1l5. , 10. , 5. , 2.5, 1. ]))

e Sample 2: the two statistics are smaller than the critical
values and the null hypothesis cannot be rejected



Normality Tests

e Sample 1 was however not normally distributed

e Sample 2 was generated with a cut-off normal distribution
that prevented samples below 0 and above 1

* This is typical, there was insufficient information to reject
the thesis of normality
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Sample Quantiles
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Normality Tests
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Limitations



Limitations

 With a p value of 0.05, one in twenty tests is likely to give
us a false positive

 Rate of false negatives is also around that



Limitations

* Not being able to reject the zero hypothesis does not
mean that the hypothesis is wrong



Example

e Height data




Example

 Gender is an important factor for height

* |f we know the heights, the distribution looks more normal
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Example

* When we apply normality tests:
e Female is normally distributed
* Male is not normally distributed according to Anderson

e Complete population is normally distributed



Example

e Can we recover the two distributions?

e Let's try to fit a combination of two normal distributions
to the binned data

def func(t, a, b, ml, sl, mZ2, s2):
return a*norm(ml, sl).pdf(t) + b*norm(m2, s2).pdf (t)

bins = np.linspace (135, 180, 46)
dt = np.histogram(popl, bins) [0]

binscenter = np.array ([ (bins[i]+bins[i+1])/2 for 1 in
range (len (bins)-1) 1)
params, pcov = curve fit (func,
xdata = binscenter,

vdata = dt,
pO=[1,1,145,15,160,15]

)



Example

 t.figure ()

| t.bar (binscenter, dt, width = bins|[1l]-bins[0])
plt.plot (binscenter, func (binscenter, *params), 'red')
fprlt.plot (binscenter, len (popl) *pdf (binscenter), 'red')
plt.show()

b-
|




Example

e Spectacular failure
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Conclusions

e Numpy has a very broad selection of random number
generators

e Scipy.stats has a very good set of implementations for
many standard statistical tests

e Which cannot overcome limitations in the data



Readings

e Scipy Lecture notes p.195ff



