
Dealing with Files
Thomas Schwarz, SJ

Files
• Files

• Basic container of data in modern computing system

• Organized into a hierarchy of directories

Files
/

/etc /Applications /var /tmp /Users

/etc/master.passwd/etc/Apache

/Users/tschwarz /Users/guest /Users/technician

/Users/tschwarz/Documents /Users/tschwarz/Applications

/Users/tschwarz/Documents/PythonPrograms

/Users/tschwarz/Documents/hangman.py/Users/tschwarz/Documents/hangman.py/Users/tschwarz/Documents/hangman.py/Users/tschwarz/Documents/hangman.py/Users/tschwarz/Documents/hangman.py/Users/tschwarz/Documents/hangman.py/Users/tschwarz/Documents/hangman.py/Users/tschwarz/Documents/hangman.py/Users/tschwarz/Documents/hangman.py/Users/tschwarz/Documents/hangman.py

A small subset of directories and files on a system

Files in Python

• Access to file system through os module

• Discussed later in course

• Files accessed in

• text mode

• Contents interpreted according to encoding

• binary mode

• Contents not interpreted

Files in Python
• Python interacts by files through

• reading

• writing / appending

• both

Files in Python
• Files need to be opened

• File given by name

• Relative path: Navigation from directory of the file

• Absolute path: Navigation from the root of the file
system

Files in Python
• File Name Examples:

• Absolute path on a Mac / Unix

/Users/tjschwarzsj/Google Drive/AATeaching/Python/Programs/pr.py

•Relate path on a Mac / Unix

•“../“ means move up on directory

pr.py

../Slides/week7.key

Files in Python
• Windows uses backward slashes to separate directories

in a file name

• Sometimes need to be escaped: \\

• Absolute paths need to include drive name:

• c:\\users\\tschwarz\\My Documents\\Teaching\
\temp.py

• We will typically read and create files in the same
directory as the python program is located

Files in Python
• Before files are used, program needs to open them

• After they are being used, program should close them

• Will automatically closed when program terminates

• Long-running programs could hog resources

Opening Files in Python
• File objects have normal variable names

inFile = open(“data.txt”,”w”)

• opens a file “data.txt” in write mode

• open takes :

• file name — absolute / relative path

• mode — r (read), w (write), a (appending)

• mode — b (binary), “” (not binary)

Closing Files in Python
• We close file by invoking close

• inFile.close()

Why we need to close files
• Files are automatically closed when the program

terminates

• When one application has opened a file for writing it
acquires a write lock on the file and no other application
can access the file.

• When one application has opened a file for reading, it
acquires a read lock on the file and no other application
can write to it.

• If you write programs that last more than a few seconds,
you do not want to hog files when you do not need them.

With-clauses
• Python 3 allows us to open and close files in a single

block (context)

with open("twoft8.11.txt") as inFile, open("twoftres8.11.txt",
"w") as outFile:

#Here you work with the file

Processing Files in Python
• We write strings to the file

 with open(‘somefile.txt’,’wt’) as f:

f.write(str(500)+”\n")

• Redirect print

 with open(‘somefile.txt’,’wt’) as f:

print(500, file = f)

Processing Files in Python
• Reading files

• The read-instruction

string = inFile.read(10)

reads ten bytes of the file

• Read the entire file

with open(‘somefile.txt’, ‘rt’ as f:

data = f.read()

Processing Files in Python
• Reading files

• Read line by line

with open('somefile.txt', 'rt') as f:

 for line in f:

 #process line

More String Processing
• To process read lines:

• strip() and its variants lstrip(), rstrip()

• Remove white spaces (default) or list of characters
from the beginning & end of the string

• split() creates a list of words separated by white
space (default)

"This is a sentence with many words in
it.”.split()

['This', 'is', 'a', 'sentence', 'with',
'many', 'words', 'in', 'it.']

Examples
• Finding all words over 13 letters long in “Alice in

Wonderland”

• Download from Project Gutenberg

import string

with open("alice.txt", "rt", encoding = "utf-8") as f:
 for line in f:
 for word in line.split():
 if len(word) > 13:
 print(word)

Examples
• Count the number of words and of lines in “Alice in

Wonderland”

• Read the file line by line

• The number of words in a line is the length of
line.split.

import string

line_counter = 0
word_counter = 0
with open("alice.txt", "rt", encoding = "utf-8") as f:
 for line in f:
 line_counter += 1
 word_counter += len(line.split())
print(line_counter, word_counter)

Problems with Line Endings
• ASCII code was developed when computers wrote to teleprinters.

• A new line consisted of a carriage return followed or preceded by a line-feed.

• UNIX and windows choose to different encodings

• Unix has just the newline character “\n”

• Windows has the carriage return: “\r\n”

• By default, Python operates in “universal newline mode”

• All common newline combinations are understood

• Python writes new lines just with a “\n”

• You could disable this mechanism by opening a file with the universal newline
mode disabled by saying:

• open(“filename.txt”, newline=‘’)

Encodings
• Information technology has developed a large number of

ways of storing particular data

• Here is some background

Using a forensics tool (Winhex) in order
to reveal the bytes actually stored

Encodings
• Teleprinters

• Used to send printed messages

• Can be done through a single line

• Use timing to synchronize up and down values

Encodings
• Serial connection:

• Voltage level during an interval indicates a bit

• Digital means that changes in voltage level can be
tolerated without information loss

time

voltage

1 0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1 1

Encodings
• Parallel Connection

• Can send more than one bit at a time

• Sometimes, one line sends a timing signal

Encodings
• Sending

• 1000

• 0100

• 1100

• 0100

• …

• Small errors in timing and
voltage are repaired
automatically

time

voltage

1 0 1 1 1 0 1 0 0 0 0 10 1 0 0 1 0 1 1 1

clock

time

voltage

1 0 1 1 0 1 1 0 1 0 1 10 0 0 1 1 0 1 0 1

line 0

time

voltage

0 1 1 0 1 0 1 0 1 0 0 11 1 0 0 1 0 1 0 1

line 1

time

voltage

0 0 0 0 0 0 0 0 0 0 1 01 0 0 0 1 0 1 0 0

line 2

time

voltage

0 0 0 1 0 0 0 0 1 1 0 00 1 1 1 1 0 1 1 1

line 3

Encodings
• Need a code to transmit letters and control signals

• Émile Baudot’s code 1870

• 5 bit code

• Machine had 5 keys, two for the left and three for the
right hand

• Encodes capital letters plus NULL and DEL

• Operators had to keep a rhythm to be understood on
the other side

Encodings
• Many successors to Baudot’s code

• Murray’s code (1901) for keyboard

• Introduced control characters such as Carriage
Return (CR) and Line Feed (LF)

• Used by Western Union until 1950

Encodings
• Computers and punch cards

• Needed an encoding for strings

• EBCDIC — 1963 for punch cards by IBM

• 8b code

Encodings
• ASCII — American Standard Code for Information Interchange — 1963

• 8b code

• Developed by American Standard Association, which became
American National Standards Institute (ANSI)

• 32 control characters

• 91 alphanumerical and symbol characters

• Used only 7b to encode them to allow local variants

• Extended ASCII

• Uses full 8b

• Chooses letters for Western languages

Encodings
• Unicode - 1991

• “Universal code” capable of implementing text in all
relevant languages

• 32b-code

• For compression, uses “language planes”

Encodings
• UTF-7 — 1998

• 7b-code

• Invented to send email more efficiently

• Compatible with basic ASCII

• Not used because of awkwardness in translating 7b
pieces in 8b computer architecture

Encodings
• UTF-8 — Unicode

• Code that uses

• 8b for the first 128 characters (basically ASCII)

• 16b for the next 1920 characters

• Latin alphabets, Cyrillic, Coptic, Armenian, Hebrew, Arabic,
Syriac, Thaana, N’Ko

• 24b for

• Chinese, Japanese, Koreans

• 32b for

• Everything else

Encodings
• Numbers

• There is a variety of ways of storing numbers (integers)

• All based on the binary format

• For floating point numbers, the exact format has a large
influence on the accuracy of calculations

• All computers use the IEEE standard

Python and Encodings
• Python “understands” several hundred encodings

• Most important

• ascii (corresponds to the 7-bit ASCII standard)

• utf-8 (usually your best bet for data from the Web)

• latin-1

• straight-forward interpretation of the 8-bit extended
ASCII

• never throws a “cannot decode” error

• no guarantee that it read things the right way

Python and Encodings

• If Python tries to read a file and cannot decode, it throws
a decoding exception and terminates execution

• We will learn about exceptions and how to handle them
soon.

• For the time being: Write code that tells you where the
problem is (e.g. by using line-numbers) and then fix the
input.

• Usually, the presence of decoding errors means that you
read the file in the wrong encoding

Using the os-module
• With the os-module, you can obtain greater access to the

file system

• Here is code to get the files in a directory

import os

def list_files(dir_name):
 files = os.listdir(dir_name)
 for my_file in files:
 print(my_file, os.path.getsize(dir_name+"/"+my_file))

list_files(“Example")

Using the os-module
import os

def list_files(dir_name):
 files = os.listdir(dir_name)
 for my_file in files:
 print(my_file, os.path.getsize(dir_name+"/"+my_file))

list_files(“Example")

Get a list of file names in the directory

Use the os-module
import os

def list_files(dir_name):
 files = os.listdir(dir_name)
 for my_file in files:
 print(my_file, os.path.getsize(dir_name+"/"+my_file))

list_files(“Example")

Creating the path name
to the file

Use the os-module
import os

def list_files(dir_name):
 files = os.listdir(dir_name)
 for my_file in files:
 print(my_file, os.path.getsize(dir_name+"/"+my_file))

list_files(“Example")

Gives the size of the file
in bytes

Use the os-module
import os

def list_files(dir_name):
 files = os.listdir(dir_name)
 for my_file in files:
 print(my_file, os.path.getsize(dir_name+"/"+my_file))

list_files(“Example")

List and

Use the os-module
• Output:

• Note the Mac-trash file

Use the os-module
• Using the listing capability of the os-module, we can

process all files in a directory

• To avoid surprises, we best check the extension

• Assume a function process_a_file

• Our function opens a comma-separated (.csv) file

• Calculates the average of the ratios of the second
over the first entries

Use the os-module
• The process_a_file takes the file-name

• Calculates the average ratio

 1.290, 12.495
 2.295, 11.706
 3.063, 9.083
 4.058, 4.112
 4.891, 34.675
 5.737, 26.422
 7.137, 13.041
 7.832, 22.620
 9.103, 27.732
 9.885, 45.692
 11.411, 59.964
 11.895, 43.350
 12.867, 57.141
 13.633, 77.273
 14.560, 85.039
 16.369, 86.708
 16.902,109.293
 18.466,114.118
 19.454,117.050
 19.918,130.860
 21.390,139.678
 22.411,159.317
 23.418,174.622
 24.417,181.855

 1.147, 1.093
 1.997, 8.833
 2.781, 10.032
 4.225, 9.733
 5.455, 15.820
 6.151, 20.939
 6.573, 26.547
 8.058, 33.335
 9.132, 37.546
 10.474, 47.130
 11.207, 50.559
 12.413, 62.268
 12.525, 68.175
 13.826, 76.877
 15.327, 84.574
 15.664, 93.389
 17.446,103.726
 18.347,111.623
 18.655,119.797
 19.581,130.094
 21.190,143.306
 21.979,154.047
 23.250,169.502
 24.406,178.782
 24.650,190.953
 25.846,199.131
 27.373,214.514
 28.126,232.827
 28.580,245.687
 30.360,256.452
 31.337,270.849
 31.583,288.109
 33.288,303.786

 0.929, 9.373
 1.858, 14.439
 3.022, 21.861
 3.751, 19.097
 4.775, 10.838
 6.253, 0.280
 6.776, 37.029
 8.395, 37.459
 9.252, 27.295
 9.602, 34.994
 10.997, 37.458
 11.696, 66.393
 13.323, 62.255
 14.480, 84.116
 14.622, 87.145
 16.397, 74.933
 16.619,125.048
 17.838,110.667
 19.352,109.947
 19.587,118.509
 21.312,152.398
 21.628,145.806
 23.242,176.448
 24.191,155.716
 24.818,182.198
 26.495,197.358
 26.831,214.137

 1.147, 1.093
 1.997, 8.833
 2.781, 10.032
 4.225, 9.733
 5.455, 15.820
 6.151, 20.939
 6.573, 26.547
 8.058, 33.335
 9.132, 37.546
 10.474, 47.130
 11.207, 50.559
 12.413, 62.268
 12.525, 68.175
 13.826, 76.877
 15.327, 84.574
 15.664, 93.389
 17.446,103.726
 18.347,111.623
 18.655,119.797
 19.581,130.094
 21.190,143.306
 21.979,154.047
 23.250,169.502
 24.406,178.782
 24.650,190.953
 25.846,199.131
 27.373,214.514
 28.126,232.827
 28.580,245.687
 30.360,256.452
 31.337,270.849
 31.583,288.109
 33.288,303.786

def process_a_file(file_name):
 with open(file_name, "r") as infile:
 suma = 0
 nr_lines = 0
 for line in infile:
 nr_lines+=1
 array = line.split(',')
 suma+= float(array[1])/float(array[0])
 return suma/nr_lines

Use the os-module
• To process the directory

• Get the file names using os

• For each file name:

• Check whether the file name ends with .csv

• Call the process_a_file function

• Print out the result

Use of the os-module
def process_files(dir_name):
 files = os.listdir(dir_name)
 for my_file in files:
 if my_file.endswith('.csv'):
 print(my_file, process_a_file(

 “Example/{}”.format(my_file)))

Using format to create the
file name

Use of the os-module

Encodings
• Whenever you see strings:

• Think about encoding and decoding

• Example: the ë

• 'ë'.encode('utf-8').decode('latin-1')

• gives

• 'Ã«'

• Mixing encodings often creates chaos

Encodings
• Python is very good at guessing encodings

• Do not guess encodings

• E.g.: Processing html: read the http header:

• Content-Type: text/html; charset=utf-8

• If you need to guess, there is a module for it:

• chardet.detect(some_bytes)

Encodings
• Thinking about encoding and decoding string allows easy

internationalization

Bytearrays
• On (rare) occasions, you might want to work with bytes

directly

• Read the file in binary mode

• Bytearray allows you to manipulate directly binary data

• bytes have range 0-255

• content = bytearray(infile.read())

