Preview:
Neural Networking

Thomas Schwarz, SJ

Perceptrons

* Neural networks are biology
Inspired cetloosy

* Instead of using Good Old Al
(GOAI):

e Try to build an artificial brain

* Brains are made up of dendrites /
neurons

 Have inputs that are activated
by electricity

 Have outputs that activate
electricity

Perceptrons

* Make a very simple model:
e A perceptron is a unit that takes a number of inputs

e Takes the weighted sum of the inputs

e Subjects it to an activation function

n
Outputs the result y = f(Z W,X;)
i=1

L2 4 — Y
w3

L3

Perceptron Model (Minsky-Papert in 1969)

Perceptrons

e Activation functions are |
various: sigmoid, tanh, step o=
functions, ... 1

* A single perceptron can be
made to classify data points
along a hyper-plane

Perceptrons

 Perceptrons:

e 1943: McCulloch and Pitts model of a neuron, very
much a perceptron with step-wise activation and equal
weight

e 1949: Hebb: Weights are different in nature
» 1958: Rosenblatt: Perceptrons work as a generic tool

e 1969: Minsky and Seymore: Perceptrons are really too
limited

Neural Networks

e Create network of perceptrons = neural networks

e 1989: Neural networks shown to be “universal
approximators”

e 1986: |

inton: Backpropagation learning algorithm

output -

Tdecode
hidden -

Tencode

Input

Neural Networks

e 1991: Hochreiter: Deep neural networks (with many
different hidden layers) are difficult to train with back-
propagation

e \anishing or exploding gradients

e 2000 - 2020: Lots of training data, Use of GPU (70 times
faster), New types of networks, Better learning algorithms

Working with Neural

Networks
e Several Python based packages for deep-learning
e Keras
 PyTorch

e Run best on GPU

Simple Example

e Pima Indian Data Set
* Preparing the data:
e Need to load data into a tensor

* Need to separate training from testing

Simple Example

 |mports first

from keras.models 1mport Sequential, load model
from keras.layers 1mport Dense

import numpy as np
import os

np.random.seed (8)

Simple Example

e Need to load data:

Pregnancies, Glucose,BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigree
Function, Age, OQutcome

6,148,72,35,0,33.6,0.627,50,1

1,85,66,29,0,206.06,0.351,31,0

8,183,04,0,0,23.3,0.0672,32,1

1,89,6606,23,94,28.1,0.167,21,0

e Use Numpy’s loadtxt

dataset np.loadtxt ("diabetes.csv", delimiter L
skiprows=1)

Simple Example

e Separate output from input parameters

e Qutput is the last column

* This is where slicing comes in

X = dataset|[:, :—-1]
Y = dataset|[:,-1]

>>> X
array ([

| —|

>>> Y
array ([

o o+~ B

o H O

= = oS

O o O O

Simple Example

~
R O

148.
85.
183.

121.
126.

~
O B O O

o - O

2.
606.
64.

12
60.

L)

o o -

o O O

o o = =

33.
26.
23.

26.
30.
30.

O B

(@)

-

R O O O

()

o O

O O

.27,
.351,
.072,

.245,
.349,
.315,

~
o O O o

50.
31.
32.

30.
47 .

O O K

O

— O O K

o O o+

Simple Example

* Now separate into training and testing data, using slices

e There are 768 records, we use the last 68 as test:

Xtrain X[:700, :]
Ytrain = Y[:700]
Xtest = X[700¢:, :]
Ytest = Y[700:]

Simple Example

* Now use Keras magic:
* Define a neural network with
e an initial layer of 8 neurons,
e a first layer with 16 neurons
 a second layer with 8 neurons

e an output layer with 1 neuron

Simple Example

e Sequential models are easiest

model=Sequential ()

model.add (Dense (16, 1nput dim=8, activation = 'relu'))
model.add (Dense (8, activation='relu'))
model .add (Dense (1, activation='sigmoid'))

e Now train

model.compile (loss='binary crossentropy',
optimizer='adam', metrics=['accuracy'])

model.fit (Xtrain, Ytrailn, epochs = 150, batch size=10,
verbose=0)

Simple Example

e Get accuracy: (Usually around 70% on test data)

score=model .evaluate (Xtest, Ytest, verbose=0)
print (f'{model.metrics names[1l]} {scorel[l]}"')

