
Minimization and Curve 
Fitting with SciPy

Thomas Schwarz, SJ



Curve Fitting
• Want to construct a curve (mathematical 

function) that best fits a series of data points


• First, need to select a model: what type of 
curve?


• Then, need to determine how we measure fit


• Examples: 


• y-values: 




• orthogonal least squares

L(y, ̂y) =
n

∑
ν=1

(yi − ̂y(i))2 → min



Curve Fitting
• Example:  Fit a sine curve to meteorological data


• Minimum daily temperatures in Melbourne  

fα,β,γ,δ(t) = α + β sin(γt + δ)



Curve Fitting
• The data after removing the sine curve shows a seemingly 

random time series with just a little bit of seasonality



Curve Fitting
• We can do better by including a cos

fα,β,γ,δ,ϵ(t) = α + β sin(γt + δ) + ϵ cos(γt + δ)



Curve Fitting
• Residual:


• Looks slightly better?



Curve Fitting
• Find the parameters that minimize the squared difference 

between function and model 


• This is a minimization problem


• Too general a model:


• Optimization can be very difficult and lengthy


• Overfit: The result matches the test set, but not the 
future


• Not general a model


• Fit is not good, therefore no strong predictions either



Program
• Need to learn about minimization


• One dimensional methods: Minimization along a line


• Gradient Descent Methods


• Minimization for Sums of Squares


• Curve-fitting



Minimization
• Functions can be smooth and non-smooth



Minimization
• Given a function 


• Find a minimum


• Potential problems:


• Minimum might not exist


• Minimum might be local

ℛn → ℛ
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Minimization
• Convex functions: For 


•   


• Tends to be easy


• Relative minimum is unique

t ∈ [0,1] :

f( ⃗a + t( ⃗b − ⃗a )) ≤ f( ⃗a ) + t( f( ⃗b ) − f( ⃗a )



Scalar Minimization
• Can be done without using derivatives:


• Brent’s method


• Standard method for scipy.optimize.minimize_scalar



Scalar Minimization
• Example:


• A curvy function

from scipy import optimize 
import numpy as np 
from matplotlib import pyplot as plt 

def f2(x): 
    return -np.exp(-(x-.9)**2+0.1*x+np.cos(10*x))



Scalar Minimization
• Show:

def show(f): 
    x = np.linspace(0,2,251) 
    y = f(x) 
    plt.plot(x,y) 
    plt.show()



Scalar Minimization



Scalar Minimization
• Brent’s method is the default

result = optimize.minimize_scalar(f2)

>>> result>>> result 
     fun: -2.7191461357325406 
 message: 'Solution found.' 
    nfev: 12 
  status: 0 
 success: True 
       x: 1.2506211193351628



Scalar Minimization
• Bounded Brent method

result = optimize.minimize_scalar(f2, bounds=(0,2), 
method='bounded') 

>>> result 
     fun: -2.7191461357325406 
 message: 'Solution found.' 
    nfev: 12 
  status: 0 
 success: True 
       x: 1.2506211193351628



Minimization
• Minimization is easier for convex functions



Minimization
• Smooth functions are (usually) easier than non-smooth 

functions


• Exception: Linear systems with constraints —> Linear 
Programming



Minimization

• Gradient  is always in the 

direction of greatest increase of a function

∇f = (
df

dx1
,

df
dx2

,
df

dx3
, …,

df
dxn

)



Minimization
• Example: Rosenbrock Function


• 


• Gradient is 


• Contour graph is 

f(x, y) = 1.2(y − x2)2 + 1.1(1 − x)2

(−2.2(1 − x) − 4.8x(−x2 + y),2.4(−x2 + y)



Minimization
• Descent Methods:


1.  Choose a starting point 


2.  If  declare victory and return 


3.  Pick a search direction  s.t. 


4.  Choose a step size  s.t.  


5.  Set . Go to 2

x0 ∈ ℛn

∥∇f(xk)∥ < ϵ xk

dk ∈ ℛn ∇f(xk) ⋅ dk < 0

αk > 0 f(xk + αkdk) < f(xk)

xk+1 = xk + αkdk



Minimization
• This algorithm leaves two things open:


• Selecting the step length 


• Selecting the search direction 

αk

dk



Minimization
• Finding minimum along line:


• Finding minimum of function 


• Use derivative is usually dangerous:


• Often function too flat


• Better bracketing

t ↦ f(xk + tdk)



Minimization
• Can use bracketing


• Three points A < C < B such that 


• Thus, minimum guaranteed to exist


• Now find another point D between A and C or C and 
B


• Get a new bracket

f(A) > f(C) < f(B)
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Minimization

• One possibility: golden ratio: 


• Other possibility: parabolic approximation


• Or a combination of both

|A − C |
|A − B |

=
|B − C |
|A − C |
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Minimization
• Determining direction:


• Can use coordinates



Minimization
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Minimization
• Using coordinates


• Make little 
progress per 
iteration
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Minimization
• Better use orthogonal directions:


• otherwise we partially undo the previous steps


• Possibilities


• Canonical Directions


• Steepest Descent (Cauchy)


• badly affected by round-off errors and subject to 
zigzagging


• Powell: Change set of directions every so often



Minimization
• Selecting the step length


• Finding the best step length is laborious


• Often do better by guessing


• Many machine learning algorithms use a steadily 
declining 


• Trying out several guesses

α



Minimization
• Newton Methods:


• Repeatedly replace condition  by a sequence 
of linear problems


• Newton-Raphson:


• apply exact Newton steps


• possibly does not converge


• works best for convex functions


• Use linear-search descent, then switch to Newton

∇f(x) = 0



Minimization
• Numerical minimization of a cost function of the 

parameters


• Various minimization methods


• Line methods


• Minimize along a particular line



Minimization
• Instead of line searches: Trust Region Methods 

• Idea: for each iteration: replace  with a quadratic 
model function 


• Quadratic model function approximates  in the 
"trust region"


• And quadratic model functions are easy to minimize!


• The proposed solution can or cannot have a smaller 
value for 


• Many different ways of defining the model 

f

f

f



Minimization with SciPy
• Can use a number of method for finding a local minimum


• Some need the Jacobian and some need in addition 
the Hessian


• Can be calculated numerically but results are better 
with exact functions


• Jacobian 


• Hessian 

J( f ) =
df
dx

= (
δf
δx1

,
δf
δx2

, …,
δf
δxn

)

H( f ) = ( δ2f
δxiδxj )

i,j



Minimization with SciPy
• Use scipy.optimize.minimize


• Needs a function that is a one-dimensional np.array 


• Specify a starting point, options, and method



Minimization with SciPy
• Importing the optimizer:

import numpy as np 
from scipy.optimize import minimize



Minimization with SciPy
• Defining a function to be minimized


• Needs to be in "standard form", i.e. numpy array of one 
dimension

def func(x): 
    return np.sin(x[0]*x[1])+(x[0]+x[1]-1)**2+(x[0]-x[1]+1)**4



Minimization with SciPy
• Sometimes need to give Jacobian


• def jacob(x): 
   return np.array(  
     (4*(1+x[0]-x[1])**3 +  
      2*(x[0]+x[1]-1)+ 
      x[1]*np.cos(x[0]*x[1]), 
      -4*(1+x[0]-x[1])**3 +  
      2*(x[0]+x[1]-1)+ 
      x[0]*np.cos(x[0]*x[1])) ) 
             



Minimization with SciPy
• We pick (5,5) as the starting point

res = minimize(func, 
               [5,5], 
               method = 'nelder-mead', 
               options = {'xatol': 1e-9, 'disp':True} 
               ) 

print(res.x) 



Minimization with SciPy
• Success: (but with lots of function evaluations)

Optimization terminated successfully. 
         Current function value: -0.295490 
         Iterations: 84 
         Function evaluations: 164 
[-0.37249737  1.18821832]



Minimization with SciPy
res = minimize(func, 
               [5,5], 
               method = 'Newton-CG', 
               jac = jacob, 
               options = {'disp':True} 
               ) 
print(res.x)



Minimization with SciPy

Optimization terminated successfully. 
         Current function value: -0.295490 
         Iterations: 10 
         Function evaluations: 12 
         Gradient evaluations: 47 
         Hessian evaluations: 0 
[-0.37249737  1.18821832]



Minimization with SciPy

res = minimize(func, 
               [5,5], 
               method = 'Powell', 
               options = {'disp':True} 
               ) 
print(res.x)



Minimization with SciPy

Optimization terminated successfully. 
         Current function value: -0.295490 
         Iterations: 5 
         Function evaluations: 139 
[-0.37249969  1.18821518]



Minimization with SciPy

res = minimize(func, 
               [5,5], 
               method = 'BFGS', 
               options = {'disp':True} 
               ) 
print(res.x)



Minimization with SciPy

Optimization terminated successfully. 
         Current function value: -0.295490 
         Iterations: 15 
         Function evaluations: 84 
         Gradient evaluations: 21 
[-0.37249848  1.18821848]



Least Square Optimization
• Want to minimize a sum of squares


• 


                         


• (Factor of 1/2 to make derivatives look nicer)

f : ℛn → ℛm

f( ⃗x ) =
1
2

m

∑
j=1

r2
j ( ⃗x )



Least Square Optimization
• With this special form, we can calculate the Jacobian of 

 more easily


              

(r1( ⃗x ), r2( ⃗x ), …, rm( ⃗x ))T

JT =

δr1

δx1

δr2

δx1
…

δrm

δx1

δr1

δx2

δr2

δx2
…

δrm

δx2

⋮ ⋮ ⋱ ⋮
δr1

δxn

δr2

δxn
…

δrm

δxn

= ( δrj

δxi )



Least Square Optimization
• Then



∇f( ⃗x ) = J( ⃗x )Tr(x)

∇2f( ⃗x ) = J( ⃗x )TJ( ⃗x ) +
m

∑
j=1

rj( ⃗x )∇2rj( ⃗x )



Least Square Optimization
• Now we assume that  is linear


• Then  is a constant


• 


• Taylor expansion is





• Taking derivatives gives


• 


• at a minimum 

| |r( ⃗x ) | |

J

∇2(rj)( ⃗x ) = 0

f( ⃗x ) = f(x0) + J( f(x)) | ⃗x 0
( ⃗x − ⃗x 0) +

1
2

( ⃗x − ⃗x 0)TH( f( ⃗x ) | ⃗x 0
( ⃗x − ⃗x 0) + …

∇f( ⃗x ) = JT(J ⃗x + ⃗r ) = 0



Least Square Optimization
• This means we can solve for the minimum since then




• and so we could solve 

JTJ ⃗x = − JTr( ⃗x )

⃗x = (JTJ)−1JTr



Least Square Optimization
• However, calculating the inverse is


• computationally expensive


• numerically unstable



Least Square Optimization
• Can use 


• Cholesky factorization 


• QR factorisation


• Singular value decomposition of 


• 


• which are all implemented in np.linalg

JTJ



Least Square Optimization
• Levenberg Marquardt algorithm


• Even if   is not linear:


• Assume that it is approximately


• Use the above method as an approximator


• Get results

r



Curve Fitting
• Number of numerical methods for minimization problems


• Curve fitting:


• Given a number of points, find a smooth curve going 
through it



Curve Fitting
• Use a cosine as the test function

def f(t, omega, phi): 
    return np.cos(omega * t + phi) 



Fitting with scipy
• Create sample data

x = np.linspace(0, 3, 50) 
y = f(x, 1.5, 1) + .1*np.random.normal(size=50)



Fitting with scipy
• Now fit using scipy.optimize

params, params_cov = optimize.curve_fit(f, x, y) 
print(params)



Fitting with scipy
• Can almost recover parameters

[1.51854577 0.92665541]

y = f(x, 1.5, 1) + .1*np.random.normal(size=50)



Fitting with scipy



Fitting with scipy
• Could also fit with a quadratic

def g(t, a, b, c): 
    return a*t**2+b*t+c 

params, params_cov = optimize.curve_fit(g, x, y)



Fitting with scipy



Fitting with scipy



Fitting with scipy
• Could also try a higher level polynomial



Fitting with scipy
• And if we try with a polynomial with as many degrees as 

there are points, we would get perfect fit


• And absolutely no insights!



Optimization
• Global optimizers:


• Grid search: Start out at a large number of starting 
positions


• Try out several methods


• If possible, calculate the gradient and the Hessian 
yourself


• Can use scipy.optimize.check_grad( ) to see whether 
you calculated correctly



 Curve Fitting
• Need to have a good model:


• Avoids under- and over-fitting


• Find a way to measure success


• E.g. time series: You want to remove trends and have 
white noise left over



Constraints
• Often need to optimize under constraints


• Easiest constraints are for box bounds:


• Variables need to be within a certain range



Constraints
• Function:

def f(x): 
    return np.sqrt((x[0]-3)**2 + (x[1]-2)**2)



Constraints



Constraints
• Optimization:


• result = optimize.minimize(f, np.array([0, 0]), 
bounds=((-1.5, 1.5), (-1.5, 1.5))) 



Constraints
• Result:

>>> result 
      fun: 1.5811388300841898 
 hess_inv: <2x2 LbfgsInvHessProduct with dtype=float64> 
      jac: array([-0.94868331, -0.31622778]) 
  message: b'CONVERGENCE: 
NORM_OF_PROJECTED_GRADIENT_<=_PGTOL' 
     nfev: 9 
      nit: 2 
   status: 0 
  success: True 
        x: array([1.5, 1.5])



HELP!!!!

• Get Scipy Lecture notes (for free)


• www.scipy-lectures.org


