
Laboratory 1
Geometry
In this laboratory project, we will start with using ASCII art in order to eventually create a game
of "Robots". This laboratory introduces to some of the tools, namely a way to display using
ASCII art.

Our first class is a class Geometry that has properties (fields) height and width. Create a
constructor (init_dunder) and a string dunder method.

Random Movement of a particle
We want to demonstrate random movement of a particle. The particle starts out a the origin of
a plain and each second moves to a position up, down, left, or right by one step. We want to
visualize the movement of a particle over a certain time.

(1) Write a class Particle. A particle has two instance fields, an x value and a y value. Beside

the dunder __str__, write a method move that updates the x and y value by randomly
selecting a number out of and in the case that 1 is selected, changes the
particle by incrementing x, that 2 is selected by decrementing x, that 3 is selected by
incrementing y and that 4 is selected by incrementing y.

(2) Add an instance
method
random_trail of
one additional
variable n that
returns a list of n
locations of a
particle resulting
from n-1 moves.
This is called a
random path.

We give a small
example on the right.
We first show the
visualization and have
printed out below it
the coordinates of the
particle. This example
is typical in that the
same positions are
often revisited.

{1,2,3,4}

Displaying in two dimensions
In Python, a two-dimensional matrix is implemented most commonly as a list of list. As an
example, consider this matrix

.

We can write it as a list of list in Python

my_matrix = [[1, 2, 3, 4],
 [5, 6, 7, 8],
 [9, 10, 11, 12]
]

To obtain the element in the second row and third column, we first select the second row as
my_matrix[1] and then the third element in this row as my_matrix[1][2]. Notice that this
is not different from Mathematics, where the corresponding element of is denoted by (if
Mathematicians would start counting from zero, which however they are not doing, so they
would call this element .)

We now want to use ASCII art in order to display points (with x and y coordinates). The basic
idea is to create a 'view' as a matrix of single characters, initially equal to the white space ' '.

First, we notice that when we specify points, we usually first give the x-coordinate and then the
y-coordinate. However, the x-coordinate corresponds to the row and the y-coordinate to the
column. When we address elements in a matrix, we however pick the row first and the column
later, which is just the reverse, and very, very confusing.

(3) Create a class View. View has three fields, width, height, and display. We use a geometry
class to obtain the width and height. This is because in future laboratories, we will use the
Geometry class as a key element. This means that your construction dunder should be def
__init__(self, geometry). Display is a height by width double list with rows of length
width, there being height rows:

 self.display = [[' ' for x in range(self.width)] for y in
 range(self.height)]
Hint: When you create an object of class View, you should use specific variable names as in
my_view = View(Geometry(height = 20, width = 50)) to keep confusion to a
minimum.

When you print out a display, we print the top
line first, whereas mathematical convention
has us number rows in the opposite direction.
We can adopt the graphics coordinate
system, where the y-axis goes down or we
can continue to use the Mathematical
convention for the y-axis to go up. We will
choose the latter possibility. To print out a

M =
1 2 3 4
5 6 7 8
9 10 11 12

M M1,2

M2,3

x

y

Graphics

x

y

Mathematics

double array like display, you print out all the rows made into a string by the use of "".join.
Remember to start with the last row and print it out first.

(4) Write a str-dunder that returns a string giving the width and height followed by display on a
newline. To do so, first create a string using ''.join of each row, and then concatenate all
of the rows using '\n'.join(), but be careful to start with the last row first.

(5) Write a method set(x, y, symbol) that sets the symbol in position x and y with the
symbol, usual a single character. For debugging purposes, put the assignment into a try,
intercept IndexError, and handle an index error by printing out the offending coordinates and
the symbol and then raising an IndexError again. For the final version, just put in a pass
when handling an index error.

(6) In class View, write a method initialize that fills in the first and last row of display with minus
signs and the first and last column of display with vertical bars. In the corners, put plus
signs.

(7) In class View, create a method draw_screen(self, my_path) that creates an object of type
particle, then create a random trail, and finally display the random trail in the view. The
random trail will start at (0,0), so you need to translate (0,0) linearly to the middle of the
display.

class View:
 def __init__(self, geometry):
 self.width = geometry.width
 self.height = geometry.height
 self.display = [[" " for i in range(self.width)] for
 j in range(self.height)]
 def __str__(self):

 def set(self, x, y, symbol):
 try:
 self.display[y][x]=symbol
 except IndexError:
 pass

 def draw_screen(self, my_path):
 …
 zero_x = self.width//2
 zero_y = self.height//2
 …
 print(self)
 def clear_screen(self):
 for _ in range(20):
 print()

	Geometry
	Random Movement of a particle
	Displaying in two dimensions

