Repetition
Classes

TwoDVector Class

Thomas Schwarz, SJ

TwoDVector

e TwoDVector:

* encapsulates two components

TwoDVector

e Define all the components of a class in the constructor
(__init__ dunder)

class TwoDVector:
def init (self, a, b):

self.x = a
self.y = D

TwoDVector

 The str and repr dunders have only self as argument and
return a string

e Usually, we use format

def str (self) :

return ' ({},{})"'.format (self.x, self.y)
def repr (self):
return '<Vector self.x = {}, self.y = {}

>' . format (self.x, self.vy)

TwoDVector

e The str dunder is called when we communicate with the
end user, for example in a print statement

>>> g = TwoDVector (4, 5)
>>> print (a)
(4,5)

TwoDVector

* The repr dunder is used by the programmer
e Usually contains more information

* Will be returned by the shell

>>> TwoDVector (2, 3)
<Vector self.x = 2, self.y = 3>
>>>

Overwriting functions

* Python has several standard functions that can be
overwritten

e Jlen_ () forlen()
e abs_ () forabs()

e The absolute value of a vector is the square-root of the
sum of squares of its coordinates

def abs (self):
return math.sqgrt(self.x**2+self.y**2)

Overwriting functions

e We call the absolute-value function using the abs function
on an object of the class

>>> myvector = TwoDVector (-3, 2)

>>> abs (myvector)

3.005551275463989
>>2>

Overwriting Operators

* Python numbers can be compared with <, >, <=, >=, ==,
and !=

e We can implement these Boolean operators using dunder
functions with magic names.

* |n the context of a vector, comparisons other than for
equality and inequality make no sense

Overwriting Operators

e [t is traditional to use self and other as the names for the
operands

def

def

~_eqg (self, other):
return self.x==other.x and self.y==other.y
ne (self, other) :

return self.x!=other.x or self.y!=other.y

Overwriting Operators

* Python allows us to define our own versions of arithmetic
operators

e We can say

>>> b = TwoDVector(2,1)

>>> a = TwoDVector (4, 5)

>>> a+b

<Vector self.x = 6, self.y = 6>

Overwriting Operators

e Jo create an addition, we use the _ _add__ dunder
e \We need to return the result as a new object

e |n our case, creating a new Vector object

def add (self, other):

return TwoDVector (self.x+other.x,self.ytother.vy)

Overwriting Operators

e o use the += operator, we overwrite __iadd___

e This one modifies self, but also returns self

def 1add (self, other):
self.x += other.x
self.y += other.y
return seltf

Overwriting Operators

>>> b = TwoDVector(2,1)
>>> g = TwoDVector (4, 5)
>>> a+Db

<Vector self.x = 6, self.y = 6>
>>> a += D

>>> print (a)

(6,0)

>>>

Overwriting Operators

o Selftest:

 Implement and try out subtraction

Overwriting Operators

e \ectors do not have a traditional multiplication, but they
have the "dot" product

e (a,b)-(c,d) =ac+ bd

* The result of the dot multiplication is a scalar, not another
vector

e But this is no problem, we just return a scalar for __ mul__

Overwriting Operators

det mu l (self, other) :

return self.x*other.x+self.y*other.y

e Usage is no different then for normal operations

>>> g = TwoDVector (4, 5)
>>> b = TwoDVector (2, 1)
>>> a*b

13

Overwriting Operators

e When Python encounters an expression a+b
e |t first checks whether there is an __add ___ dunder for a

e Then it checks whether thereisan radd dunder for
b

e |t is not necessary that a or b are objects of the same
class

Overwriting Operators

e \/ectors have a scalar multiplication
e x-(a,b) = (xa,xb)

* Notice that we traditionally write the scalar to the left and
the vector to the right

e So we can use __rmul__ to implement scalar
multiplication

e \We still need to return a new Vector

def rmul (self, nr):
return TwoDVector (self.x*nr, self.y*nr)

Overwriting Operators

e Ifwetry a *= 3 foravector a, the __mul__ operation
gets invoked, effectively calculating a = a*3

* This results in an error, since an integer does not have x
and y fields

* However, we can implement __imul__ and then it will work

def 1mul (self, other):
self.x *= other
self.y *= other
return self

Implementing Functions

e JTwo-dimensional vectors have a rich set of functions

e \We can rotate a vector by an angle 6 using the formula:

cosd —sinb <X>
sin@ cosd Y

def rotate by(self, theta):
return TwoDVector (self.x*math.cos (theta)-self.y*math.sin(theta),
self.x*math.sin(theta) tself.y*math.cos(theta))

Implementing Functions

e A reflection on a hyperplane is defined in terms of a
normal, a vector standing orthogonal on the plane

Normal Hyper-plane

Implementing Functions

e The formula for the reflection uses the dot-product

e a is the normal of the hyperplane

V-a
. y—vVv—2 a
a-a

Implementing Functions

def reflect by (self, other):
'"'"T"Reflection of self on hyperplane orthogonal to other'''
return self - 2*(self*other)/ (other*other) *other

