
Repetition
Classes

TwoDVector Class
Thomas Schwarz, SJ

TwoDVector
• TwoDVector:

• encapsulates two components

y

x

TwoDVector
• Define all the components of a class in the constructor

(__init__ dunder)

class TwoDVector:
 def __init__(self, a, b):
 self.x = a
 self.y = b

TwoDVector
• The str and repr dunders have only self as argument and

return a string

• Usually, we use format

def __str__(self):
 return '({},{})'.format(self.x, self.y)
 def __repr__(self):
 return '<Vector self.x = {}, self.y = {}
>'.format(self.x, self.y)

TwoDVector
• The str dunder is called when we communicate with the

end user, for example in a print statement

>>> a = TwoDVector(4,5)
>>> print(a)
(4,5)

TwoDVector
• The repr dunder is used by the programmer

• Usually contains more information

• Will be returned by the shell

>>> TwoDVector(2,3)
<Vector self.x = 2, self.y = 3>
>>>

Overwriting functions
• Python has several standard functions that can be

overwritten

• __len__() for len()

• __abs__() for abs()

• The absolute value of a vector is the square-root of the
sum of squares of its coordinates

def __abs__(self):
 return math.sqrt(self.x**2+self.y**2)

Overwriting functions
• We call the absolute-value function using the abs function

on an object of the class

>>> myvector = TwoDVector(-3,2)
>>> abs(myvector)
3.605551275463989
>>>

Overwriting Operators
• Python numbers can be compared with <, >, <=, >=, ==,

and !=

• We can implement these Boolean operators using dunder
functions with magic names.

• In the context of a vector, comparisons other than for
equality and inequality make no sense

Overwriting Operators
• It is traditional to use self and other as the names for the

operands

def __eq__(self, other):
 return self.x==other.x and self.y==other.y
def __ne__(self, other):
 return self.x!=other.x or self.y!=other.y

Overwriting Operators
• Python allows us to define our own versions of arithmetic

operators

• We can say

>>> b = TwoDVector(2,1)
>>> a = TwoDVector(4,5)
>>> a+b
<Vector self.x = 6, self.y = 6>

Overwriting Operators
• To create an addition, we use the __add__ dunder

• We need to return the result as a new object

• In our case, creating a new Vector object

def __add__(self, other):
 return TwoDVector(self.x+other.x,self.y+other.y)

Overwriting Operators
• To use the += operator, we overwrite __iadd__

• This one modifies self, but also returns self

def __iadd__(self, other):
 self.x += other.x
 self.y += other.y
 return self

Overwriting Operators

>>> b = TwoDVector(2,1)
>>> a = TwoDVector(4,5)
>>> a+b
<Vector self.x = 6, self.y = 6>
>>> a += b
>>> print(a)
(6,6)
>>>

Overwriting Operators
• Selftest:

• Implement and try out subtraction

Overwriting Operators
• Vectors do not have a traditional multiplication, but they

have the "dot" product

•

• The result of the dot multiplication is a scalar, not another
vector

• But this is no problem, we just return a scalar for __mul__

(a, b) ⋅ (c, d) = ac + bd

Overwriting Operators

• Usage is no different then for normal operations

def __mul__(self, other):
 return self.x*other.x+self.y*other.y

>>> a = TwoDVector(4,5)
>>> b = TwoDVector(2,1)
>>> a*b
13

Overwriting Operators
• When Python encounters an expression a+b

• It first checks whether there is an __add__ dunder for a

• Then it checks whether there is an __radd__ dunder for
b

• It is not necessary that a or b are objects of the same
class

Overwriting Operators
• Vectors have a scalar multiplication

•

• Notice that we traditionally write the scalar to the left and
the vector to the right

• So we can use __rmul__ to implement scalar
multiplication

• We still need to return a new Vector

x ⋅ (a, b) = (xa, xb)

def __rmul__(self, nr):
 return TwoDVector(self.x*nr, self.y*nr)

Overwriting Operators
• If we try a *= 3 for a vector a, the __mul__ operation

gets invoked, effectively calculating a = a*3

• This results in an error, since an integer does not have x
and y fields

• However, we can implement __imul__ and then it will work

def __imul__(self, other):
 self.x *= other
 self.y *= other
 return self

Implementing Functions
• Two-dimensional vectors have a rich set of functions

• We can rotate a vector by an angle using the formula:

•

θ

(cos θ −sin θ
sin θ cos θ) ⋅ (x

y)

def rotate_by(self, theta):
 return TwoDVector(self.x*math.cos(theta)-self.y*math.sin(theta),
 self.x*math.sin(theta)+self.y*math.cos(theta))

Implementing Functions
• A reflection on a hyperplane is defined in terms of a

normal, a vector standing orthogonal on the plane

Normal Hyper-plane

Implementing Functions
• The formula for the reflection uses the dot-product

• is the normal of the hyperplane

•

a

v ⟶ v − 2
v ⋅ a
a ⋅ a

a

Implementing Functions
def reflect_by(self, other):
 '''Reflection of self on hyperplane orthogonal to other'''
 return self - 2*(self*other)/(other*other)*other

