
Inheritance in Python
Thomas Schwarz, SJ



Inheritance
• Sometimes, classes have other classes as components:


• Clients have addresses


• Class Client has a field of type Class Address


• Sometimes, classes expand other classes


• Example: animal -> dog -> poodle


• The poodle is a dog, the dog is an animal


• Example: 


• employee -> engineer (an engineer is an employee)


• employee -> first level manager (a manager is an employee)



Inheritance
• The manager and the employee share data and 

functionality


• If we implement them as classes:


• Manager Class and Engineer Class have common 
fields and common methods.


• This is a common phenomenon



Inheritance
• Graphics implementation:


• An app has a number of elements


• Buttons, Canvases, Labels, EntryBoxes, 
Icons, ...


• All these elements share:


• The idea of size (usually a rectangle in the 
app)


• Certain functionality



Inheritance
• We have identified two possible relationships between 

classes


• is_a  

• objects of one class are also instances of another 
class


• Poodles are Dogs


• has_a 

• objects of one class are fields (aka properties aka 
members) of another class



Inheritance
• These are of course not the only relationships between 

classes


• Methods can have arguments that are objects of 
different classes


• Methods can use one class as an argument and return 
an instance of another class


• etc



Inheritance
• We implement the common structure in a 


• Base Class (aka. parent class)


• We implement the specifics in a 


• Derived Class (aka child class)



Inheritance
• Example:


• Class Poodle is derived from Class Dog


• Class Dog is derived from Class Animal



Inheritance
• How do we do it:


• We first implement the parent class


• We then implement the child class


• We derive by putting the name of the parent in 
parenthesis in the definition of the child class

class Parent: 
   ... 

class Child(Parent): 
   ...



Inheritance
• Example:  Base Class is Person.  


• A person has a name and a birthdate


• Derive a class Employee


• An employee is a person


• An employee has an annual salary



Inheritance
• Implement the base class (minimum):

class Person: 
    def __init__(self, name, birthday): 
        self.name = name 
        self.birthday = birthday 
    def __str__(self): 

  return '{} (born {})'.format(self.name,                          
self.birthday) 

if __name__ == '__main__': 
    abe = Person('Abraham Lincoln', 'Feb 12, 1809') 
    doug = Person('Stephen Douglas', 'Apr 23, 1813') 
    bell = Person('John Bell', 'Feb 18, 1796') 
    print(abe, doug, bell)



Inheritance
• To derive the child class:


• In the constructor, add a call to the parent class 
constructor


• Then add new fields / properties

class Employee(Person): 
    def __init__(self, name, birthday, salary): 
        Person.__init__(self, name, birthday) 
        self.salary = salary



Inheritance
• Instead of calling the constructor of the parent class by 

name, we can also use the super method


• super( ) automatically gets the Parent class


• There is no self - parameter in the call

class Employee(Person): 
    def __init__(self, name, birthday, salary): 
        super().__init__(name, birthday) 
        self.salary = salary



Method Overriding
• In our implementation, we now have 


• two __init__ dunder methods


• two __str__ dunder methods


• This is called method overriding 

• Any object has a type, in this case, a class


• Depending on the object's class, the right method is 
invoked



Method Overriding
• Self-test:


• Create a dunder hash for Person, composed of the 
hash for name and birthday


• Create a dunder hash for Employee, composed of the 
hashes of person and the birthday



Selftest Solution
class Person: 
... 
def __hash__(self): 
        return hash(self.name)+hash(self.birthday)

class Employee(Person): 
    ... 
    def __hash__(self): 
        return hash(self.name)+hash(self.birthday) 
+self.salary



Private Members of a 
Parent Class

• Many programming languages allow to make fields (aka 
properties) private


• The "private parts" joke


• Python does not use a compiler to enforce privacy


• In line with Perl:


• “Perl doesn't have an infatuation with enforced privacy. 
It would prefer that you stayed out of its living room 
because you weren't invited, not because it has a 
shotgun”        ― Larry Wall



Private Members of a 
Parent Class

• Python enforces rules by convention


• Convention 1:  If you want other programmers or 
yourself to leave the fields in a class alone, you preface 
them with a single underscore


• Convention 2: If you want to be 'embarrassingly 
private', use double underscores before



Private Members of a 
Parent Class

• Python enforces the double underscore rule by mangling


• Internally, properties with an initial double underscore 
are stored under a different name


• But the name is predictable, so you can break the rule 
after all


• But it would be very impolite 


• Either making them private was a bad idea


• Or breaking privacy is horribly bad



Private Members of a 
Parent Class

• Let's change Person to have a private property


• I cannot thing of anything that makes sense, so lets use 
a nonsensical property code

class Person: 
    def __init__(self, name, birthday): 
        self.name = name 
        self.birthday = birthday 
        self.__code = 'P'



Private Members of a 
Parent Class

• If I try to access it directly, I get an error:

>>> abe = Person('Abraham Lincoln', 'Feb 12, 1809') 
>>> abe.__code 
Traceback (most recent call last): 
  File "<pyshell#9>", line 1, in <module> 
    abe.__code 
AttributeError: 'Person' object has no attribute 
'__code'



Private Members of a 
Parent Class

• But I can access it by using the mangled name:


• Mangler calls the field _<class name>__field

>>> abe._Person__code 
'P'



Comparison with other 
languages

• Object Oriented programming was introduced with two big 
advantages in mind:


• Code Reusability


• You do not need to re-implement a class from another 
project


• Modularity


• Simpler design


• Containment of errors: Easier to pinpoint a class 
implementation at fault


• These promises have been only partially fulfilled.



Comparison with other 
languages

• Code reuse:


• Rarely happens in practice other than through the 
implementation of libraries. 


• For easier code reuse, C++ uses templates


• E.g. one list instead of list of integers, list of strings, 
etc.


• Python does this through 'duck typing'


• As long as something behaves like a duck, it is a 
duck



Comparison with other 
languages

• Modularity


• C++, Java enforce access restrictions


• These can be circumvented with dirty tricks


• Force programmers to redeclare fields as private, 
protected, public


• Python uses protection by "convention", not protection 
by compiler error


• If you want to, but you should not want to, you can 
declare fields private using the double underscore



Comparison with other 
languages

• Code Reuse:


• Inheritance allows us to reuse 
code written for a base class


• Inheritance becomes difficult when 
the diamond pattern is allowed:


• What happens if parents share a 
method with the same name


• What if one parent overwrites a 
grandfather method and the other 
one does not

Grandfather

Parent1 Parent2

Child



Comparison with other 
languages

• Multiple Inheritance: a class derives from more than one 
class


• Not allowed in Java, but allowed in Python and C++


• If used, need to understand how Python resolves 
names of methods and fields


•



Comparison with other 
languages

• Interfaces:


• a type of class interface used in Java to assure that 
classes fulfill certain requirements


• e.g. a class implementing an interface has a hash 
method


• Python can use "Abstract Base Classes" to provide the 
same support


• Advanced topic



Comparison with other 
languages

• Python OO is easy if you stick with the basics


• If you want to do advanced stuff, there is more to learn


•


