
Regular Expressions
Python II

Why
• A frequent programming task is “filtering”

• Retain only those records that fit a certain pattern

• Typical part of big data and analytics applications

• Example for text processing

Why
• Whenever you deal with text processing

• Think about whether you want to use regular
expressions

Why
• Regular Expressions are a theoretical concept that is well

understood

• Many programming languages have a module for regular
expressions

• Usually, very similar syntax and semantics

• We can use ad hoc solutions, but regular expressions are
almost always faster

How
• Usually, we want to compile a regular expression

• This allows for faster scanning

• Compilation cost time

• But usually amortized very quickly

• Python regular expressions are in module re

• Use p=re.compile('?')

• Where the question mark is the search string

How
• A Python regular expression is a string that defines the

search

• The string is compiled

• After compilation, a match, search, or findall is performed
on all strings

• The output is None if the regular expression is not
matched

• Otherwise, depending on the function, it provides the
parts of the string that match

A first example
• In a regular expression, most characters match

themselves

• Unless they are “meta-characters” such as *, \, ^

• E.G.: Find all lines in “alice.txt” with a double hyphen

• Regular expression is '--'

• Read in all lines of the text file, find the ones that match

• Need to use search, because match only matches at
the beginning of a string

A first example
• Import re

• Compile the
regular expression

• Match lines
with .search()

import re

p = re.compile('--')

def match1():
 with open("alice.txt") as infile:
 line_count = 0
 for line in infile:
 line_count+=1
 line = line.strip()
 if p.search(line):
 print(line_count, line)

Using raw strings
• A raw string is a string preceeded with a letter r:

• print(r'Hello World')

• The difference to a normal string is that the escape
character always means the escape character itself.

• print(r'\tHello') prints out \tHello

• print('\tHello') prints out Hello after a tab.

• This can be very useful because we might on occasion
have to escape the escape character several times.

Matching
• Characters are the easiest to match

• Find all words in lawler.txt (a large list of English words) with
a double “oo”

• Just change the expression

• import re

p = re.compile('oo')

def match1():
 with open("lawler.txt") as infile:
 line_count = 0
 for line in infile:
 line_count+=1
 line = line.strip()
 if p.search(line):
 print(line_count, line)

Matching
• Letters and numbers match themselves

• But are case sensitive

• Punctuation marks often mean something else.

Matching
• Square brackets [] mean that any of the enclosed

characters will do

• Example: [ab] means either 'a' or 'b'

• Square brackets can contain a range

• Example: [0-5] means either 0, 1, 2, 3, 4, or 5

• A caret ^ means negation

• Example: [^a-d] means neither 'a', 'b', 'c', nor 'd'

Self Test
• Find all lines in a file that have a double 'e'

Self Test Solution

import re

p = re.compile(r'ee')

def match_ee(filename):
 with open(filename) as infile:
 for line in infile:
 if p.search(line):
 print(line.strip())

Self Test 2
• Find all lines in a file that have a double-'ee' followed by a

letter between 'l' (el) and 'n'

Self Test 2 Solution
import re

p = re.compile(r'ee[l-m]')

def match_ee(filename):
 with open(filename) as infile:
 for line in infile:
 if p.search(line):
 print(line.strip())

The only difference is in the regular expressions where

we have now a range of letters.

Matching: Wild Cards
• Wild Card Characters

• The simplest wild card character is the period / dot: “.”

• It matches any single character, but not a new line

• Example: Find all English words using Lawler.txt that
have a patterns of an “a” followed by another letter
followed by “a”

• Solution: Use p = re.compile('a.a')

Matching: Wild Cards
• If you want to use the literal dot '.' you need to escape

it with a backslash

• Example: To match “temp.txt” you can use 't...\.txt'

• This matches any file name that starts with a t, has
three characters afterwards, then a period, and then
txt.

Matching: Repetitions
• The asterisks repeats the previous character zero or more

times

• Example: '\.[a-z]*' looks for a period, followed by
any number of small letters, but will also match the simple
string '.'

• The plus sign repeats the previous character one or more
times.

• Example: 'uni[a-z]+y' matches a string that starts
with 'uni' followed by at least one small letter and
terminating with 'y'

• This is difficult to read, as the + looks like an operation

Matching: Repetitions
• Braces (curly brackets) can be used to specify the exact

number of repetitions

• 'a{1:4}' means one, two, three, or four letters 'a'

• 'a{4:4}' means exactly four letters 'a'

Self Test
• Write a regular expression that matches the name of any

Python file.

• Notice that ".py" is not a valid Python file. There must
be something before the dot.

Self Test Solution
p2 = re.compile(r'.+\.py')
def match2():
 with open("temp.txt") as infile:
 line_count = 0
 for line in infile:
 line = line.strip()
 if p2.search(line):
 print(line)

Matching
• \w stands for any letter (small or capital) or any digit

• \W stands for anything that is not a letter or a digit

• Example: Matching “n”+non-letter/digit+”t”

•p = re.compile(’n\\Wt')

• We need to double escape the backslash using normal
Python strings

•p = re.compile(r’n\Wt')

• Or use a “raw string” (with an “r” before the string)

• In a raw string, the backslash is always a backslash

"Speak English!" said the Eaglet. "I don't know the meaning of half
They were indeed a queer-looking party that assembled on the bank

Matching
• \s means a white space, newline, tab

• \S means anything but a white space, newline, or tab

• \d matches a digit

• \t matches a tab

• \r matches a return

Regular Expression
Functions

• Once compiled a regular expression can be used with

• match() matches at the beginning of the string and
returns a match object or None

• search() matches anywhere in the string and returns
a match object or None

• findall() matches anywhere in the string and does
not return a match object

Match Objects
• A match object has its own set of methods

• group() returns the string matched by the regular
expression

• start()returns the starting position of the matched
string

• end()returns the ending position

• span()returns a tuple containing the (start, end)
positions of a match

Regular Expression Gotcha
• Regular expression matching is greedy

• Prefers to match as much of the string as it possibly
can

• Example:

• Prints out

p3 = re.compile(r'.+\.py')
print(p3.search("This file, hello.py and this file
world.py are python files"))

<re.Match object; span=(0, 42), match='This file,
hello.py and this file world.py'>

Non-Greedy Matching
• We can use the question mark qualifier to obtain a non-

greedy match.

• p = re.compile('o.+?o')

• Finds all non-overlapping, minimal instances

Advanced Topics
• In this module we only scratched the surface.

• There is excellent online documentation if you need more
information

• But this should be sufficient to do simple tasks such as
data cleaning and web scraping

