
On-the-fly AES256 Encryption / Decryption for
Trusted Cloud SQL DBS

Position Statement

Abstract—We propose client-side AES256 encryption for a
cloud SQL database. We rely on the safety of DB run-time values
e.g. through a moving target defense. This applies to keys sent by
the client with a query as well as decrypted values needed for
query evaluation. We trust that the DBS clears these values at or
before the end of query evaluation. Query results may be in
cipher for certain clients or in plaintext e.g. for a browser. The
scheme offers all the functionality of a SQL DBS that does not
use encryption, but stores all data in encrypted form. An
implementation should be straightforward.

Keywords—cloud DB, client-side encryption, AES, trusted DBS

I. INTRODUCTION
A database (DB) outsourced to a cloud can obviously

benefit from client-side encryption. The universal consensus
holds that cloud storage does not offer confidentiality and that
sensitive data should only be stored in encrypted form. In [2],
we propose a new paradigm based on trusting the
confidentiality of volatile data in the cloud Database System
(DBS), even against insiders with administrative privileges,
while persistent values, namely the stored data, are only made
safe by encryption.

While this seems to be a new paradigm for cloud DBS, in
fact billions of users rely on it when using popular OS and
browsers to which they entrust passwords, credit card numbers
and other highly sensitive values at run-time. A smaller amount
of users entrust their system with storing these data
permanently unless they are stored in encrypted form secured
by a password [14]. Our paradigm applies this universal
practice to cloud DB.

The traditional way of building databases for the cloud
stores data in encrypted form, downloads encrypted data to the
client, and only there decrypts them for query evaluation. This
architecture implicitly only trusts the DBS at the client, which
is almost always a third-party product and which obviously has
network access. Our paradigm requires only additional trust for
DBS in the cloud. There is however no reason to trust an SQL
server or any other commercial product for local runtime but
simultaneously not trust any other product elsewhere. Most
attack vectors are a priori as likely at a client as at a cloud
node.

In order to be practical, the cloud SQL DBS has to evaluate
most queries in the cloud. This is especially the case for the
select-project-join (SPJ) queries ubiquitous in OnLine
Transaction Processing (OLTP). The only, but usually

impractical alternative is to transfer data to the client. An SQL
query often includes value expressions, which are frequent for
OnLine Analytical Processing (OLAP) where aggregation is
typical. Under the usual security paradigm, homomorphic
encryption is necessary to avoid large transfers to clients. To be
practical, homomorphic encyrption must be fast, so that
response times for processing unencrypted and encrypted data
are comparable. While homomorphic encryption has been a
long-lasting research goal, up to now only semihomomorphic
schemes such as the additively homomorphic scheme of
Pailliers are fast enough for specific applications. See [2] for
further details.

Our paradigm led to a new quasi-homomorphic encryption
scheme called THE-scheme [2], which is faster and more
general than previous proposals, but limited to a specific finite,
numerical value domain. The THE-scheme encloses some
sensivite metadata, the client secret, with each query involving
an arithmetical operator other than addition. The cloud DBS
uses the client secret and discards all the secret run-time values
before the query execution terminates.

Below, we explore this paradigm further. A query might
now include sensitive metadata such as cryptographic keys.
Processing a SELECT query may decrypt a table into a run-
time value. An UPDATE query may produce on-the-fly
encryption to produce a ciphertext to be stored in the DB. The
metadata and any plaintext produced is cleared before the
query execution terminates. The DB behaves functionally as if
it were to use full homomorphic encryption.

We call the cloud DBS designed as outlined trusted. We
believe that trusted DBS are a promising avenue for research in
the cloud. Below, we first propose a reference architecture.
This architecture is software only, i.e. we forego the use of any
specific hardware add-on, as we want to serve mass
production. We also propose that any DB managed by a trusted
DBS uses AES256 encryption. We define a deterministic and a
probabilistic AES-based encryption scheme, the latter
providing protection against frequency analysis whereas the
former is faster for SPJ queries and hence more attractive for
OLTP.

We give an overview for the rules of a query execution plan
for an AES DB. We then analyze performance, where we focus
on the processing time and the storage overhead compared to a
DB that stores data in unencrypted form. We show that for
modern multi-core processors such as the INTEL I5,
processing and storage overhead increase only negligible. For
the probabilistic version, this should still be true for

Sushil Jajodia Witold Litwin Thomas Schwarz

George Mason University Université Paris Dauphine Marquette University
Fairfax, VA, USA Paris, France Milwaukee, Wisconsin, USA

aggregations. This makes our proposal eighty times faster than
Paillier’s scheme. In contrast to our deterministic encryption
(but not to Paillier’s), the storage doubles. See [3] for details.

We base our conclusions on recent AES benchmarks [5].
Some show the need for experiments specific a cloud SQL
DBS. This task remains for future work. We fell that our
proposal is of major practical importance, especially because
important products such as Google Cloud SQL and MS Azure
SQL offer already server-side AES256 encryption transparent
to the user. Unfortunately, these products do not protect against
cloud insiders as the key is stored persistently in the cloud.
Azure also offers client-side encryption, which unfortunately
requires transfering entire tables or even the entire DB between
servers and the client [13]. There are also other limitations, for
example, no equijoins on probabilistically encrypted columns
[9].

The next section presents the AES DBS. We discuss the
reference architecture of a trusted DBS and define the use of
AES for a cloud DB. We also discuss the generation of a query
execution plan. Section 3 analyzes the processing and storage
overhead. We draw conclusions and discuss future work in
Section 4. We stress that implementing a trusted DBS should
be easy, for example using an existing cloud MySQL
implementation or an SQL DBS with user defined functions.

II. THE TRUSTED AES DBS

A. Reference Architecture for a trusted cloud DBS
Figure 1 depicts our reference architecture. It applies to any

cloud DBS designed according to our paradigm, regardless of
the encryption method use. An AES-based trusted DB is only a
specific case of the architecture. The DB administrator at a
client site initiates the cloud DB through some kind of upload
not discussed here. The DB itself is encrypted. Clients operate
on the DB through SQL queries. While an SPJ query might
manipulate directly relations encrypted deterministically

(seebelow), most queries need to work on relations in plaintext
and hence need to decrypt. An update also entails encrypting
relations. The cloud DBS performs decryption and encryption
on the fly, while reading run-time plaintexts from and writing
them to the DB. All data exchanged are protected in transport
through some of the usual protocols and schemes (SSL, RSA,
Diffie-Hellman, etc.) The DBS instantiates run-time variables
with the metadata sent along with the query. It deletes any
sensitive run-time content, including the metadata and
retrieved or calculated plaintext data at the latest when query
processing ends.

The cloud processes the queries using some core DBS. This
is some full-fledged “classic” plaintext DBS. Our trusted
cloud DBS is the core DBS reinforced whenever needed
through security oriented (software-only) re-engineering. The
reengineered trusted DBS runs on typical cloud hardware
without the need for dedicated hardware add-ons such as a
trusted computing module (TCM) [14]. The protection offered
can be thaught of as a vault, armor, shield, or firewall.
Independent of the name, it protects the core DBS from
exploits that can reveal run-time values.

We believe that trusted DBS are a promising goal for cloud DB
research. One technical base for the trust mechanism is moving
data defense. Such defenses are extensively discussed in [4].
They dynamically and secretely shuffle the storage
representation and location of the program instructions and
run-time variables. The concept goes back to decade-old
proposals for secure VMs [1]. Alternatively, many users might
be happy with a trusted DBS running on a cloud node without
any security reengeneering relying on a gradual increase in
security through software and hardware updates. For instance,
Intel announced its Software Guard Extensions (SGX) in 2013
and markets them in late 2015. Processors with SGX guard
specific RAM areas called enclaves. No software outside an
enclave can read or write the enclave’s content regardless of its
current privilege level and CPU mode. This mechanism
protects run-time values for a trusted DBS.

Fig. 1 Reference Architecture of Trusted Cloud DBS

 While these techniques are promising, the security of a
trusted cloud DBS will need to be adjusted to new technical
developments and the comfort level and security needs of its
users.

 The trusted DBS may send the selected data as ciphertext
or plaintext or mix both. The ciphertext requires the post-
processing decryption at the client. Unlike under the traditional
paradigm, a client of a trusted DBS may alternatively request
the entire decryption at the cloud. Avoiding securely the
decryption burden may clearly make many clients happier. In
practice, even the popular browsers should thus be apt to serve
as clients of a trusted DBS. All this appears an advantage of the
new paradigm. The traditional one obviously excludes such
clients.

 As the result, two kinds of clients and queries appear, Fig.
1. A smart client of a trusted DBS is basically a client DBS
able to locally encrypt/decrypt. A simple, (thin, dumb…)
client does not have this capability. A smart client may send a
ciphertext query. Such a query uses explicitly the encryption
function on cipher-text constants or columns. It may carry
ciphertext constants or bring ciphertext to the client for final
decryption. A simple client emits plaintext queries only. Those
cannot bring a ci-phertext. The cloud DBS interprets every
constant of a plaintext query as a plaintext and every column
name as refer-ring to a plaintext. A plaintext query must
include the metadata with the key(s) (Conclusion of [3] shows
alternative conventions). Every encryption/decryption is done
on-the-fly at the cloud. A ciphertext query may avoid the
metadata, as it might not need the decryption/encryption on the
cloud. This is a potential security advantage. Coming
however, we recall, at the price of burden at the client. A smart
client may of course formulate any plaintext query with the
key(s) as well. When there are several keys, e.g., one per
column, a smart client may also send a ciphertext query with
only some but not all the keys required by a plaintext one.

Example 1. (a) The following SPJ query is in plaintext.
Metadata with the key `ABCD’ follows with the semicolon
terminating the SQL statement.
(1) Select C.Name, A.Transactions from Customer C, Account
A where C.Id = ‘123’ and C.Id = A.Id ; ‘ABCD’

To evaluate the query, the cloud DBS may perform on-the-
fly encryption of the selection constant ‘123’. Or, it may on-
the-fly decrypt the visited Id ciphertexts. The choice depends
on whether Id encryption is deterministic or probabilistic, see
below. In every case, the DBS decrypts the final projection
(C.Name, A.Transactions) by default.

(b) We denote the encryption function as AESE. The next
query could be a ciphertext one of some smart client:
(2) Select Into Client.CacheDB.CipherTbl AESE (C.Name),
AESE (A.Transactions) from Customer C, Account A where
AESE (C.Id) = AESE (‘123’) and AESE (C.Id) = AESE (A.Id);

Unlike query (1), query (2) does not carry the key. As said,
it is potentially a security advantage over query (1). In
contrast, as we detail below, query (2) is valid only if the
encryption of Id column is deterministic. Also, it is up to the
client to encrypt ‘123’. If the clause was simply C.Id = ‘123’,
it would mean for the cloud necessarily the on-the-fly
decryption of Id to test the match of ‘123’. The query would

be rejected as not carrying the key. As is, the query brings the
ciphertext. The result goes to CipherTbl table. The query
dynamically creates it in some cache DB for the cloud DB at
the client, named CacheDB. The client must decrypt the result
for the user (application). E.g. through the following local
query, calling the decryption function, say AESD:
Select AESD (C.Name), AESD (A.Transactions) From
CipherTbl;

B. Deterministic Encryption for an AES DB
From now on, we consider specifically the on-the-fly

encryption/decryption through AES, as in Ex. 2. In other
words, we restrict our focus to AES DBs only. As usual, we
distinguish between OLTP and OLAP queries. It is well-
known the former perform best with deterministic encryption.
We recall that any given plaintext is then encrypted always to
one ciphertext. Provided the client-side decryption and the
individual encryption of each column plaintext value, i.e., no
grouping of column plaintext values into a single ciphertext,
(see [3] for that option), the cloud DBS can evaluate the
selections and equi-joins of a typical SPJ query over the
ciphertext. This could be the case of query (2) provided Name,
and Id column individually and deterministically encrypted.
Transactions column may or may not be deterministic. The
client must be a smart one.

We recall that AES is a symmetric, deterministic block
cipher using 16B blocks. Padding is necessary if values such
as a double precision floating point number has a smaller size
or to adjust to the length of strings. The most frequently used
version of AES uses 256b keys.

C. Probabilistic Encryption for an AES DB
Deterministic encryption is vulnerable to a frequency

analysis and therefore secure only for low-entropy domains.
Its use is fine for random ID, social security numbers, tax
payer ID, etc., but not for the transactions in the previous
examples, ZIP codes, or salaries. In general, it should be
avoided fro any column with a skewed domain value
distribution [3].

We can use AES for probabilistic encryption by adding
random elements to the values to be encoded. For example, if
column values contain double precision floating point
numbers, then we can add 8 random bytes to each value, so
that each numerical value can be encrypted in 2**64 different
ways. We can also define formats for small strings that
contain random elements so that the same string can be
encoded in many different ways. For very long strings, we can
use cipher block chaining with an initialization vector to
achieve the same end.

The drawback to the use of probabilistic codes is the
impossibility to perform SPJ queries on encrypted data. Even
an equi-join on probabilistically encrypted data fails because
the same value is likely to be encrypted in two different ways
in two records. Joins can only be executed by decrypting the

values on which we do the join. The trusted DBS can do so
only if it receives the key in the metadata.

A query to an AES DB referring to a column with a
probabilistic ciphertext may be a plaintext one. E.g., - like
query (3) but with the key in the metadata. The client does not
need to know what the encryption of a column is really. A
smart client may alternatively issue a ciphertext query,
provided it includes the key as well. The DBS is obviously
functionally able to evaluate any join or selection entirely at
the cloud through their on-the-fly decryption. See again [3] for
deeper discussion.

D. Query Execution for an AES DB
With respect to the execution plan, any trusted DBS, the

AES DBS in particular, blends the on-the-fly decryption into
the execution plan optimal for the DB as if it was the plaintext
one. In other words, it generates some plan as if the DB
contained the plaintext. Then, it decrypts on-the-fly when-ever
needed every ciphertext selected during the query execution.
In this way, the DBS is able to execute for any encrypted DB
any query valid for the plaintext one. See Ex. 3 and Ex. 4 in
[3] for samples of executions plans.

Notice already nevertheless that to execute query (4) at the
cloud under the traditional paradigm, the encryption of Trans-
actions should be fully homomorphic. There is no such
scheme providing even remotely practical response time as
yet.

III. PERFORMANCE ANALYSIS

A. Processing Overhead
What matters most for our proposal is the overhead of on-

the-fly AES256 decryption and encryption at the cloud,
induced by a query to the ciphertext in AES DB. There are
sever-al recent benchmarks of AES: [5], [6], [10]. These
consider the popular multi-core processors. Most of them
naturally consider the ciphertext in RAM cache or disk. The
encryption/decryption result can be measured as sent out (or
simply dropped) or with every ciphertext/plaintext written
back to RAM. The former measure is the basic one for Select
queries. The latter one adds up for a systematic Update query.
For in-stance, - adding 10% to every price in some table. The
main measure is the number of encrypted/decrypted bytes per
second (MBs). The decryption can be little faster than
encryption.

The encryption can be entirely in software. Two popular
public-domain algorithms are Truecrypt and Twofish. The
former uses the Rijndael’s algorithm that won NIST
competition. The latter was a competitor as well, but appeared
slower, for 64b processors especially, [8], [7]. Within Intel I5
proces-sors family, several CPUs have instructions for AES
encryp-tion/decryption hardware acceleration. These are so-
called AES-NI instructions. Some Xeon CPUs also do, e.g.,
Xeon X5690. Pricing with or without NI is in practice the
same. Truecrypt 7.0a takes advantage of AES-NI. Twofish

does not. The benchmarks show that AES-NI effectively
speeds up the processing. Results vary among benchmarks.

For our purpose, we concentrate on I5, as the most used.
Ac-cording to [G2], the bulk raw (straight) encryption using
the Truecript 70.a without RAM re-writing provides the
impressive 1900 MBs encryption/decryption rate. Twofish
leads to 273 MBs “only”. More recent results in [5] for a wide
range of CPUs, report for I5 661 CPU specifically, an even
more im-pressive 4133 MBs rate. Presumably, with Truecript
70.a as well. Results for other CPUs vary, the slowest being
317 MBs and the average being 1.9 GBs. For the deterministic
encryp-tion this leads up to 516,5M for AES-NI and to 34M
for Twofish pf plaintexts/ciphertexts processed per second.
To decrypt 100K values, e.g., for sum SUM function, may
take thus as little as 0.2 ms with Truecript 70.a (and 3ms with
Twofish). For our probabilistic encryption, the timing
multiplies by two.

The processing naturally slows down when every decrypt-
ed/encrypted value is written back to RAM. Only [6] reports
the related experiment, using Truecript 70.a. It performed at
763 MBs. However, the plaintext writing rate was then limited
to 880 MBs. Encrypting led thus to 13% overhead only. Per
value rate is about 100 - 50Ms and 100K value decryption
takes 1-2ms for our encryptions. How the RAM writing im-
pacts an SQL query depends obviously on the aggregates and
clauses (GROUP BY, ORDER BY TOP…). Nevertheless,
Select queries serve generally to produce few values only. An
aggregate is expected to read perhaps very many tuples, but to
produce from relatively a few only. The writing timing of
these results should therefore very little impact of the read-
only re-sults above. It is not the same for a large update. We
come back to the issue below in SQL specific analysis.

The bulk transfer rate from hard or SS (flash) disk is disk
technology dependent. They appear to be at most 150MBs in
practice (SATA-3 interface). The random access times are
well-known, i.e., about 10ms in practice for a hard disk and
1ms for an SSD. The AES overhead appears negligible, allow-
ing for the real-time processing (Aegis Padlock disks).

The results for the decryption/encryption of selected values
or of small groups of those are slower than for bulks. The rea-
son is so-called key set-up time. Experiments show neverthe-
less that the key set-up may cost for the Rijndael’s algorithm
as little as 15% slow-down [8]. An SQL query is typically ex-
pected to do a bulk search. We thus neglect this (small
anyway) specificity in what follows.

Finally, the AES algorithms above discussed appear pro-
grammed in assembly language. Use of a higher-level compil-
er, e.g., Java, may have a severe impact. For Oracle JDK 1.7,
Intel reports thus at best 80 MBs rate, for AES-NI, [I5]. This
is 10M values per second for us, “only”. The overhead goes
up to 10ms per 100K decryptions. We do not analyze this
result further. Using best optimized implementation for a
cloud DBS seems natural. The subject requires nevertheless a
specific study.

B. Storage Overhead
Our deterministic AES scheme may have theoretically no

storage overhead. In practice, a negligible one may occur de-
pending on specifics of a DB scheme. The probabilistic
encryp-tion carries at best the 100% overhead, i.e., doubles the
plaintext storage. This is nevertheless what probabilistic ho-
momorphic schemes typically need at least as well, e.g., Pailli-
er’s scheme. So our scheme is not worse on storage require-
ments.

C. Query Processing
The basic measure of this one is the overhead of on-the-fly

decryption on the otherwise plaintext execution plan for the
same SQL query. The overhead may depend on the execution
plan. Globally, the decryption may deal even with GBytes of
data per second. Also, the study of the read/write speeds for a
ciphertext and a plaintext above has shown only 13%
overhead. All this suggests that even for a RAM DB, the
overhead of the on-the-fly decryption on the execution could
be usually limited to a dozen of percent or so as well. It should
become negligible if the DB is solid state or hard disc resident.
Another measure can be the query execution speed of a query
with respect to the same query executable also using a
homomorphic encryption. The Select SUM(x)… query adding
100K plaintext values at the cloud server using Paillier,
reputed the fastest traditional homomorphic scheme, needed
14ms per addition, [11], [12]. Our scheme could add up at best
0.2ms as above discussed. The overhead could thus be as low
as 1.5 %. All other bench-marks we cited would cost only a
few milliseconds at most. AES DB should thus be even in this
limited case about eighty times faster. See again [3] for more.

IV. CONCLUSIONS
The on-the-fly decryption/encryption by a trusted cloud

DBS, appears the first generally practical architecture for a
client-side encrypted relational cloud DB. It roots in the
intensive research for almost four decades. It is the only to
offer in practice at present all the functional capabilities of a
plaintext relational DBS. It is also the only to allow for simple
clients. The on-the-fly decryption/encryption run-time
overhead should be negligible for an AES DB, whether it uses
the deterministic or our probabilistic encryption. The queries
should be also at least two orders of magnitude faster than for
any known homomorphic encryption scheme. In addition, the
functional and processing capabilities of all those schemes
perhaps suffice for selected applications, but are largely
limited with respect to our scheme.

Our study has shown several directions for further work.
Limited space does not let us to discuss most of those. See [3].
The main conclusion is that building an often likely to be
sufficient AES DBS appears astonishingly easy. Nowadays, as

we discussed, one may indeed reasonably trust the safety of
the run-time variables of a major plaintext SQL DBS, e.g., in
enclaves. Free MySQL appears then 1st choice. Its
AES_ENCRYPT() and AES_DECRYPT() may implement
our AESE (c, k) and AESD (c, k) functions. The RAND
function should help with the probabilistic encryption. More
generally, our goal seems also easy if an existing plaintext
cloud SQL DBS supports user defined functions (UDFs),
(unlike, e.g., Google Cloud version of MySQL at present).
SQL Server seems then a good candidate as well, with the
cloud-side AES256 encryption already offered in addition, [9].
In each case, a browser suffices to run plaintext queries as a
simple client. It is likely the way to start practicing our
proposal.

REFERENCES
[1] Holland, David A., Ada T. Lim, and Margo I. Seltzer. 2005. An

architecture a day keeps the hacker away. 2004 Workshop on
Architectural Support for Security and Anti-Virus. Boston, MA. Special
issue, Comp. Arch. News 33 (1):34-41.

[2] Jajodia, S. Litwin, W. Schwarz, Th. Numerical SQL Value Expressions
over Encrypted Cloud Databases. 8th Intl. Conf. on Data Management
in Cloud, Grid and P2P Systems (Globe 2015). In DEXA 2015.
Springer, 2015.

[3] I Jajodia, S. Litwin, W. Schwarz, Th. On-the fly AES
Decryption/Encryption for Cloud SQL Databases. Lamsade Res. Rep.
June 2015.
http://www.lamsade.dauphine.fr/~litwin/Next%20step%205.pdf

[4] Jajodia & al. eds. Moving Target Defense. Advances in Information
Security. Vol 1 & 2. Springer, 2011-3.

[5] SiSoftware AES256 Benchmark. 2015
http://www.sisoftware.co.uk/?d=qa&f=cpu_vs_gpu_crypto&l=en&a=.

[6] Grant. Hardware AES Showdown - VIA Padlock vs Intel AES-NI vs
AMD Hexacore. 2011. http://www.grantmcwilliams.com/tech/technology/387-
hardware-aes-showdown-via-padlock-vs-intel-aes-ni-vs-amd-hexacore

[7] Dandalis & al. A Comparative Study of Performance of AES Final
Candidates Using FPGAs In: Cryptographic Hardware and Embedded
Systems – CHES 2000, 2nd Intl. Workshop. Worcester, MA, USA,
2000. Lecture Notes in Computer Science, Springer (publ.).

[8] Schneier, B. & al. AES Performance Comparisons.
http://csrc.nist.gov/archive/aes/round1/conf2/Schneier.pdf

[9] Hammer, J. Szymaszek, J. Overview and Roadmap for Microsoft SQL
Server Security. Microsoft Ignite, Chicago, Apr. 2015.
https://channel9.msdn.com/Events/Ignite/2015?t=mission-critical-oltp .

[10] Intel. AES-NI Performance Testing on Linux*/Java* Stack, 2012.
https://software.intel.com/en-us/articles/intel-aes-ni-performance-
testing-on-linuxjava-stack#aes256.

[11] Smith, K., Allen, D., Sillers, A., Lan, H., Kini, A.: How Practical Is
Computable Encryp-tion? http://csis.gmu.edu/albanese/events/march-
2013-cloud-security-meeting/04-Ken-Smith.pdf.

[12] Smith, K., Allen, M., D., Lan, H., and Sillers, A. Making Query
Execution Over Encrypted Data Practical. Secure Cloud Computing.
Springer, 2014, Jajodia, S. & al eds, 173-190.

[13] Szymaszek, J. Encrypting Existing Data with Always Encrypted. SQL
Server Security Blog, July 28, 2015
http://blogs.msdn.com/b/sqlsecurity/archive/2015/07/28/encrypting-
existing-data-with-always-encrypted.aspx.

[14] Trusted Computing Group. www.trustedcomputinggroup.org.

