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Abstract— The apparently unlimited resources of modern

clouds bring distributed computing to the masses. We propose

a new data structure for the organization of embarrassingly

parallel calculations based on the cloud paradigm of easily

creating and destroying virtual machines rented at low cost.

The data structure has nodes materialize, scan, and discard

virtual records and aggregate the scan results within a time limit

provided by the client and is an instance of a scalable distributed

virtual data structure. It is based on extensible hashing. We show

how to deal with variances in the node capacities and how to

make the structure resilient to failures.

Index Terms—Knapsack Problem; Integer Optimization;

Cloud Computing; Scalable Distributed Virtual Data Structure

I. INTRODUCTION

Cloud computing has brought distributed computing to the
masses. The availability of cheap computing cycles for rent
allows for calculations that before were only possible on
specialized hardware or would tie up a computer for a long
time. Now, these types of computations can be embedded into
data analysis or even into database queries [27] if we can
guarantee that they terminate in a user-defined time limit.

Even if the computational task is “embarrassingly parallel”
and can be easily distributed over a large number of cores,
the developer needs to write code that allocates the resources,
distributes the work over a large number of cores, and deals
with node failures. We propose here to simplify the devel-
opment process with a structure that autonomically allocates
and uses resources so that a certain programming task finishes
within a user-defined limit. We concentrate on solving a
very general class of optimization problems, namely zero-one-
integer programming problems that are of great importance in
Operations Research. Many optimization problems, including
the knapsack problem and the traveling salesman problem can
be expressed in this form.

Our structure is motivated by Scalable Distributed Data
Structures (SDDS). SDDS store records in buckets distributed
autonomously over the nodes in a distributed system. Records
consist of a record identifier and a content field. Besides
the key-based operations of insertion, retrieval, update, and
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deletion of records, they also allow a scan operation. The
scan operation passes through all records (even those relocated
after the beginning of the scan) and is used to select records
or aggregate records for example for a top-k query or the
calculation of a sum, average, or standard deviation.

Scalable, distributed, virtual data structures use virtual
records instead of user-generated ones [16]. A typical use of
the data structure is the optimization of an objective function
over a finite, but large set. Each virtual record encodes an
element of the set over which we optimize. The data structure
distributes the virtual records over a number of nodes and then
starts the scan operation. This operation materializes the virtual
records at a node to obtain a description of a set element,
evaluates the objective function, and maintains a list of top
k best local results. In a final phase, the local results are
agglomerated to a global result, that is then returned to the
user. The data structure is responsible to extend the number
of nodes to limit the scan time to a user defined limit (such as
ten minutes) and to allow the calculation to be done even
in the presence of node failures. Another use of scalable,
distributed, virtual data structure is the inversion of a hash
function. (We used this previously for a key-backup scheme
[15]). Formally, this is still an optimization problem where the
records describe possible arguments to the hash function and
the objective function is one if the hash equals the value to be
inverted and zero if not.

The structure we present here, called Scalable Virtual Dis-
tributed Hashing (SVDH) is based on Extendible Hashing
[12] and the distributed version of linear hashing, LH⇤ [24]
[21]. Extensible Hashing divides records in buckets and splits
buckets in about even halves in order to grow the file. This
form of splitting makes it especially attractive for solving cer-
tain zero-one-integer optimization problems. This is because
a virtual record consists of an assignment of the binary values
0 or 1 to a set of variables and those assigned to a specific
node are the ones where a subset of the variables have fixed
values. The local calculation can thus simplify the evaluation
by substituting the values for these variables.

Nodes are virtual machines that need to coexist with other
virtual machines on the same physical nodes and compete for



resources such as memory bandwidth. Even if all physical
machines are identical, each virtual machines has a different
capacity for computation. SVDH allocates autonomously suffi-
cient nodes in order to guarantee that the calculations terminate
within a time limit set by the user, for example, 10 minutes.

Cloud computing environments are harsh and all applica-
tions need to be able to withstand loss of one, a few, or
many computing nodes. For instance, Birman asserts that it
is acceptable for a data center administrators to shut down a
significant proportion of machines in order to recover from
unstable situations [3]. Applications simply need to be able
to recover from deliberate or accidental node unavailabilities.
SVDH places nodes in small buddy groups that observe each
other’s progress, safeguard the others’ progress, and can restart
the saved calculation at another node in case of failure. With
an added safety margin, SVDH can then guarantee that even
in the presence of failed nodes, the computations terminate in
time with a chosen high probability.

The rest of the article is organized as follows: We give
the definition of SVDH in Section 2. Section 3 evaluates the
performance of SVDH, especially node utilization. Section 4
evaluates its resilience to failure – due to random churn and
to related outage. We discuss related work in Section 5 and
then conclude.

II. A HASH-BASED SCALABLE DISTRIBUTED VIRTUAL
DATA STRUCTURE

Scalable Virtual Distributed Hashing (SVDH) adapts ex-
tendible hashing [12] and scalable distributed data structures
[24], [21] to the distribution of work in a discrete optimization
by brute force. It uses hash partitioning to assign efficiently
points in the search space to nodes (virtual machines) in a
cloud data center. Each search point is treated as a virtual
record and the assignment is based on hashing.

A. Example: Zero-one integer optimization
We use Zero-One Integer Optimization (ZOIO) as the

target application. Many problems in Operations Research and
Computer Science ranging from airline crew scheduling to
register allocation by a compiler can be expressed as integer
optimization. Even the traveling salesman problem is such a
problem [29]. ZOIO consists in maximizing or minimizing an
objective function over a number of variables that can only
take values 0 and 1 and that are subject to a set of restraint
inequalities:

fopt(x) ! max
fc1(x) d1, . . . , fcm(x) dn

x 2 {0,1}n

A classical example of ZOIO is the zero-one knapsack
problem where we are required to select a subset of items
from {X1,x2, . . . ,Xn}. Item xi has weight wi and value vi. We
are looking for the subset whose combined weight does not
surpass a weight limit W and has maximal combined value. If

we let the variable xi take the value 1 if the item Xi is included
in our selection and 0 otherwise, then the problem becomes

w1 · x1 +w2 · x2 + . . .+wn · xn  W
v1 · x1 + v2 · x2 + . . .+ vn · xn ! max

x1,x2, . . .xn 2 {0,1}

This knapsack problem is NP-complete even though the
single constraint and the objective function are linear. It can be
solved in pseudo-polynomial time by dynamic programming.
A database applications would be a query that lets a depart-
ment head select gifts for all her department members of a
total value of less than 100 $ out of a gift catalogue.

As another example, we use a crew assignment problem.
Assume that a company has two flights 1 and 2 from Montev-
ideo to Buenos Aires every day. The company has three pilots
1,2, and 3 and three copilots 4, 5, 6. We let xi j be a decision
variable that is set to one if (co-)pilot i is assigned to flight
j and zero otherwise. The condition that there is at least one
pilot on flight 1 is expressed as the constraint

x11 + x21 + x31 � 1

and the condition that there are at least two pilots or a pilot
and a copilot on flight 1 is expressed as the constraint

x11 + x21 + x31 + x41 + x51 + x61 � 2.

To require at least one of pilots 1 and 2 to be both assigned to
flight 1 we can use a constraint that uses integer multiplication
to express a boolean and, namely

x11 · x21 > 0.

If we want to avoid that both pilots 1 and 2 are assigned to
flight 1, we can instead use

x11 + x22  1.

In this manner, we can easily express any number of con-
straints to the crew assignment problem. We finally need an
objective function that could measure the costs of a certain
assignment and that we want to minimize.

While it is fairly easy to express many combinatorial
problems as a zero-one integer optimization problem, efficient
methods for solving them are only known for certain subprob-
lems. Even if all constraints and the objective function are
linear (and the problem is a zero-one integer linear program-
ming problem), cutting plane methods and branch-and-bound
problems are reasonably efficient, but still exponential. It is
known that integer linear programming is NP-complete.

The capability to solve general zero-one integer optimiza-
tion problems introduces additional capabilities to distributed
databases such as the capability to solve knapsack problems
[27].



B. Scalable Distributed Virtual Data Structures
Scalable distributed virtual data structures are structures that

provide a complete scan of all records stored in them in the
manner of a scalable distributed data structure [16]. However,
instead of storing explicit records stored in the nodes of a
distributed system (e.g. a cloud data center), they scan virtual
records. SDDS principles are used to assign virtual records
to nodes. The records therefore consist of an identifier and
a value field. A node generates iteratively all virtual records
assigned to it from the record identifiers, evaluates the records,
and aggregates the evaluation values to a local result (such as
a list of the top k values). At the end of the calculation, the
data structure aggregates the various local results into a global
result and returns the result to the user.

In the case of zero-one integer optimization, an identifier l
characterizes a virtual record that assigns the ith bit of l to the
binary variable xi. The record identifiers of a ZOIO with 100
variables are therefore the range {0,2100 �1}. The evaluation
consists of plugging the values of the binary variables into the
constraints and checking whether the constraints are fulfilled.
If they are, then the objective function is evaluated. The
node maintains the best or the top-k values of the objective
function. The global aggregation process at the end of the local
calculations has the structure aggregate the local results into
a global result that is returned to the user.

C. SVDH Generation
SVDH is a hash-partitioned scalable, distributed, virtual data

structure distributing work over a number of nodes. Nodes
are identified by integers and are created by splitting already
existing nodes starting with Node 0. As in extendible hashing
[12], a node is split if it is overloaded. The split then distributes
the work equally over the old and the new node.

To set up a calculation, the user defines a maximum
calculation time R and creates a virtual file scheme SF at a
coordinator or master C. By default, C becomes Node 0. In
general, SF contains the program for the scan and aggregation
phases of the calculation. In our application, SF contains the
structure of the zero-one integer optimization problem. The
user also sets a maximum scan time R.

Each node performs a sample of the work to be done,
to determine its throughput, the number of records that can
be processed during a time unit. The formula B = RT then
determines the capacity, the number of records that can be
scanned during the user-set scan time limit. If currently there
are L records assigned to the node, its load is a = L/B. The
node splits when a > 1. In a split operation, a new node is
allocated and half the records assigned to the current node
move to the new node. The load of the splitting node is halved.

Each node identifier is an integer i � 0. As for LH⇤,
we define a level for each node by the following recursive
procedure [16]: Node 0 starts out with level 0. Whenever a
node splits, its level is increased and its descendent gets also
the new level. When we split Node i when it has level l(i),
the new node has identifier 2l(i) + i. Node i gets all records
with identifier x where x ⌘ i mod (2l(i)).
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Fig. 1: A small Hash Tree

The nodes naturally organize themselves in a tree, the Hash
Tree (Figure 1). When a node i splits, it becomes the parent
of the new node 2l(i) + i. In the figure, we show a very small
hash tree, where we assumed that the nodes have about the
same capacities. Node 0 split five times, incrementing its level
to 5 and acquiring nodes 0+ 20 = 1, 0+ 21 = 2, 0+ 22 = 4,
0+23 = 8 and 0+24 = 16 as descendants. Node 1 started out
with level one and split four times, gaining nodes 1+21 = 3,
1+ 22 = 5, 1+ 23 = 9, and 1+ 24 = 17 as descendants. The
resulting tree is in general not balanced and Node 0 tends
to have the highest number of descendants. The number of
descendants and the graph distance to Node 0 always sum
up to the level of a node. The load of a node with level l is
always 2�l of the total load. If each node has exactly the same
capacity, then all nodes have the same level and their number
is a power of two. If they are about equal, then in general their
levels are two values l0 and l0 +1.

In the global accumulation phase, nodes pass their local
results to their parent in the tree, until the results reach Node
0, which then sends the agglomerated result to the user. In
more detail, nodes without children send their local results
to the parent, once they have terminated the scan of their
assigned records. A node with children does the same, once it
has obtained the results from all its children (and finished its
scan). When a node has received results from all its children
and its own results are available, it creates an agglomerated
result, that is then passed up to its parent or to the user in the
case of Node 0.

In the case of zero-one integer optimization, the materialized
virtual records are truth assignments to the Boolean variables
and those assigned to Node i have l(i) of these variables
assigned to constants. In the situation depicted in Figure 1,
Node 3 has all virtual records with x0 = 1, x1 = 1, x2 = 0, and
x3 = 0, since it has level 4. By plugging in these values, we
obtain a problem with l(i) less variables.

D. Using buddy groups for reliability
Cloud data centers are harsh environments as for example

shutting down nodes is seen as a legitimate means for solving
instability problems [3]. We use the idea of process groups
[2] to provide failure tolerance by grouping nodes into buddy
groups. We protect against individual nodes or a proportion
of all nodes becoming unresponsive (for example because the
virtual machine was deleted). Failure tolerance is simplified
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Fig. 2: Buddy group formation

by the at-least-once nature of brute force searches. A virtual
record can be scanned several times without altering the result
(idempotency). Failure tolerance is also simplified because
an optimization result is just the record identifier of the
optimizing record or possible a top-k set of such results. If
two nodes run in parallel on the same task we do not incur
additional costs beyond the rental costs of the additional node.

Buddy groups of nodes run membership and consensus pro-
tocols such as Paxos or Raft [4], [18], [31] in order to ensure
that no member node of their group can become unavailable
without being replaced. These protocols have been the subject
of intense studies and well working versions for smaller group
sizes are available. Unfortunately, these protocols do not scale
well with membership size. To limit the effects of a node
unavailability, the group leader periodically scans all other
nodes and has them send a progress report to all other nodes in
the group. This constitutes a work window. The progress report
consists of the part of the search space already scanned and
the partial results of the search. In the case of a node failure,
a replacement node thus does not begin afresh but starts at the
last check point of the failed node.

A simple procedure uses the node allocation process. Every
nth node receives leadership status and the following 2n�1th

nodes are assigned to the two previous leaders. A leader of a
group of n nodes or more splits from the previous group. The
results are groups of n and a last group with size between n
and 2n�1.

An alternative procedure uses the structure of the hash
trees and forms buddy groups with between four and seven
members. The procedure forms groups walking up the tree.
Each group has a leader for the purpose of group construction.
The groups formed have between 2l and 2l+1 �1 nodes. An-
ticipating our reliability results from Section IV, a reasonable
value would be l = 2 and the groups would have between four
and seven elements. Initially, we form protogroups consisting
of all those nodes that have no children. Each of these
protogroups has only this node as a child. For the small tree
given in Figure 1, these protogroups are {15}, {11}, {13},
{9}, {17}, {10}, {18}, {12}, {8} and {16}. For the following
step, each leader of a group with less than four members sends
a “join” message to its parent. A leader of a group with more
than four members sends a “go-ahead” message to its parent.
A node which is a parent waits to receive messages from all its

children. If a child sends a “join” message, it makes itself the
temporary leader of a protogroup that contains the union of
the groups of all children that send a “join” message. If a node
that is a parent receives only “go-ahead” messages, it makes
itself the leader of a protogroup with only itself as member. In
our example, Node 0 will receive join messages from Nodes
8 and 16, but cannot proceed until it has received messages
from Nodes 1, 2, and 4. Node 7 forms a group {7,15}, Node 5
a group {5,13}, Node 6 a group {6,14}, and Node 4 a group
{4,12}. Once Node 7 has formed this group, it sends a “join”
message to Node 3. Node 3 now has received messages from
its children and forms a group {3,7,11,15}. It then sends a
“go-ahead” message to Node 1. Node 1 receives join messages
from Nodes 5, 9, and 17. This leads to the formation of group
{1,5,9,13,17} and lets Node 1 send a “go-ahead” message to
Node 0. Similarly, Node 2 will become the leader of a group
{2,6,10,14,18}. Node 0 will receive a “join” from Nodes 4, 8
and 16 and forms a group {0,4,8,16,12}. Figure 2 gives this
example. The procedure is guaranteed to place every node in
a group with four to seven members with the exception of the
final protogroup containing Node 0. If this protogroup does
not have enough members, it unifies with the group of an
arbitrarily chosen child of Node 0. The union has either seven
or less members or it has eight or more. In the first case, we
are finished, in the second case, we only need to divide the
last group. This procedure is guaranteed to work if there are
at least four nodes in the tree. If there are N nodes, it will
send N � 1 “join” or “go-ahead” messages. Since each node
receives or sends at most a constant number of messages, the
procedure is scalable.

E. Message passing and phases of calculation

The lifetime of an SVDH structure naturally falls into
various phases. The generation phase starts with the client
creating the coordinator node through the cloud mechanism
and handing it the virtual file scheme that defines the cal-
culation. Nodes that have sufficient capacity and who have
received a message from all their children that they also
have finished the generation phase, report this to their parent.
When the coordinator has received this message from all of
its children, the coordinator starts the next phase that creates
the buddy groups. At this moment, the system has become
failure tolerant. Before, a practical implementation has nodes
regenerate children with whom they cannot communicate, but
at the small risk of having nodes allocated that are descendent
of a failed node. Presumably, the interface to the cloud service
has a way to detect the existence of such rogue nodes after
a while. Nodes that do not receive acknowledgment of their
communication to their ancestor will also eventually deallocate
themselves automatically. The calculation phase proper starts
at each node once it has joined a buddy group. The coordinator
plays no special rôle in it until the calculation comes to an end.

The tree structure is used for the aggregation of results.
Each leaf node that terminates its calculation sends its local
optimization results to its parent. A parent sends a similar
message to its parent if all its children have send their results,



the node itself has finished its calculation, and aggregated the
various local results.

This tree structure can also be useful for variants that try to
exploit the algebraic structure of the computation problem. For
example, if we are dealing with 0-1 integer optimization, then
we can have nodes accumulate their (temporary) local optima
after the first work window and have the coordinator return
the (temporary) global optimum to all other nodes. The nodes
then can determine whether their local optimization problem
can possibly beat the already seen temporary optimum. If this
is not the case, then the node can terminate its calculation
since it cannot possibly contribute. This is a variant of the
well-known “branch-and-bound” method of optimization.

F. Capacity changes

Nodes are virtual machines collocated with other machines
and suffer potentially from the effects of collocation by cache
contention, network contention, etc. In this paper, we assume
that the capacity of nodes varies (within bounds established for
example by quality of service guarantees) among nodes and
during the lifetime of a computation. However, we assume
that the latter are rare events, triggered by moving the virtual
machine to a new node or adding or removing other virtual
machines at the same host.

During the calculation, a monitor module keeps track of the
speed of the calculation. If this speed varies from the initial
estimate, the monitor triggers a local restructuring of the data
structure. If the capacity is no longer sufficient to finish the
calculation in the user-defined limit, then the node splits. If
the node has excess capacity and has descendants, then the
node contacts the latest descendant (which is the one with
the highest identifier) and sees whether it does not have the
capacity to deal with its load as well. If this is the case, then
the latest descendent leaves its buddy group and shuts down.
If the node has excess capacity and no descendent, then it
contacts its parent to see whether this parent has the capacity
to deal with its own and the node’s load, in which case the
node leaves the system and the parent assumes the complete
load. In summary, the detection of excess capacity triggers an
attempt to reverse the last split.

Below, we show that merging nodes – the step of undoing
the last split if possible – is important. If not, the overall loss
in utilization is noticeable, especially when the variance of
node capacities is high. With it, a wave of changes in the
node capacities leads to a readjustment with statistically same
node utilization as before.

G. Fast initialization

If SVDH uses a total of N nodes, the critical path in the
timeline will run through dlog2(N)e node creations. While
cloud applications generate new nodes fast, they still take some
time. The time to set up a virtual machine appears to be 2-
3 seconds based on experiments for the popular Vagrant VM
[14]. If the coordinator has decided that its load factor is N,
it can directly request the creation of 2blog2(N)c�2 and assign
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Fig. 3: PDF of C2,6,0.3 and C4,4,0.3 used as random variables
representing actual node capacity. The former has support in
the interval [0.85,1.45] and the latter in [0.7,1.3], but both
have mean 1.

them to the upper levels of the Hash tree. This creates SDVH
faster than previously explained.

III. PERFORMANCE EVALUATION

To evaluate the utilization of the cloud resources using
SVLH, we simulated the assignment of nodes for a small
system (using Python 3) standardizing the average node ca-
pacity to 1 and distributing a total load of L between 500
and 2200 over the system. If all nodes have exact capacity
one, then the system is deterministic and the system will use
exactly 2dlog2(L)e nodes, yielding an average utilization that
varies between 1, if L is an exact power of two and 0.5+e/L
if L is an integer power of two plus e . The average value for
the utilization is 0.75. As we introduce variation into the node
capacities, the resulting sawtooth graphs get spread out, but
this pattern is still quite visible for distributions with smaller
variance, as Figures 4 and 5 show.

As we do not have measurements on the capacity of virtual
machines in actual data centers, and as we also desire to
develop a data structure for general systems, we choose
to model uncertainty by a family of distributions that are
unimodal (the probability density function has a single hump)
and have support in a limited interval. The latter because a
virtual machine has a maximum performance and because
quality of service guarantees will not allow its performance to
fall below a certain level without migrating it to a less loaded
computer. An example for such a distribution is the truncated
normal distribution. Here, we use the beta distribution since
a beta distribution with a fixed support is determined by two
positive shape parameters a and b that yield a wide variety
of distributions. Our experiments suggest that only the general
shape of the distribution determines the behavior of the system.

A beta distribution defines a stochastic variable X between
0 and 1. It has mean µ(a,b ) = a/(a + b ), variance s2 =
ab (a +b )�2(1+a +b )�1, and skewness 2(b �a)(a +b +
1)1/2(a + b + 2)�1(ab )�1/2. Since we model distributions
with mean 1, we choose a stochastic variable Xa,b with beta-
distribution with shape parameters a and b and consider the
stochastic variables

Ca,b ,s = 1�2sµ(a,b )+2sXa,b

which is a translated beta-distribution with mean 1. The
parameter s is the “spread”. We give an example in Figure 3,
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Fig. 4: Utilization in dependence of number of nodes. The nodes have capacity distributed by various beta distributions with
average 1 and various spreads.
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Fig. 6: Node utilization before and after 50% of the nodes change capacity after the initial assignment and before node merges
for the various beta distributions and spreads s indicated. The before value and after values are connected through a filling.

where we give the probability density function of C2,6,0.3
and C4,4,0.3. The mean of the beta distribution with shape
parameters 2 and 6 is 1/4. To obtain a random variable with
mean 1 and a support interval (where the PDF is positive) of
size 2⇥0.3, we need it to start at 1�0.6⇥0.25= 0.85 and end
at 1.45. Similarly, C4,4,0.3 has support [0.7,1.3]. Both random
variables have mean 1. The spread s is always half the size of
the support interval.

We used these random variables to simulate the utilization
of nodes in a system with initial load L 2 [500,2200] by gen-
erating node capacities using these translated beta distribution.

Figure 4 gives the results. Each graph shows the results using
one beta-distribution and for spreads 0.1, 0.2, 0.3, 0.4, and
0.5. The distribution with lowest variance, i.e. with spread 0.1
follows most closely the sawtooth curve where the distribution
with highest variance, i.e. with spread 0.5 exhibits the least
dependence on the initial load. The average utilization over
loads from 1024 to 2048 given in Table I is lower with higher
variance.

In Figure 5 we first show the PDF of the beta distributions
use, and then a comparison between the results obtained with
symmetric distributions and asymmetric distributions using



Parameters 0.1 0.2 0.3 0.4 0.5
baseline

2,2 0.728 0.707 0.689 0.673 0.658
4,4 0.733 0.718 0.703 0.690 0.678
6,6 0.736 0.723 0.711 0.699 0.688
10,10 0.739 0.729 0.719 0.709 0.700
2,10 0.740 0.731 0.722 0.714 0.705
6,10 0.738 0.727 0.717 0.707 0.697
10,2 0.739 0.729 0.720 0.711 0.702
10,6 0.738 0.727 0.716 0.706 0.696

with 10% change
2,2 0.726 0.704 0.683 0.665 0.649
4,4 0.732 0.715 0.699 0.684 0.671
6,6 0.735 0.721 0.707 0.695 0.683
10,10 0.738 0.727 0.716 0.705 0.696
2,10 0.740 0.730 0.720 0.711 0.702
6,10 0.737 0.725 0.714 0.703 0.692
10,2 0.738 0.727 0.717 0.707 0.697
10,6 0.737 0.725 0.713 0.702 0.691

with 50% change
2,2 0.718 0.689 0.662 0.638 0.615
4,4 0.726 0.704 0.683 0.663 0.645
6,6 0.730 0.711 0.693 0.677 0.661
10,10 0.734 0.719 0.705 0.691 0.678
2,10 0.737 0.724 0.711 0.699 0.687
6,10 0.734 0.718 0.703 0.688 0.674
10,2 0.734 0.720 0.705 0.692 0.679
10,6 0.733 0.717 0.701 0.686 0.672

TABLE I: Average utilization rates without changes and with
changes before merges.

spread 0.5. The y-axis has a different range, but we can clearly
see that with high variance, the maxima and minima of node
utilizations are slightly shifted. On the right, we see that the
distribution with strong positive skew (with parameters a = 2
and b = 10) approaches most the behavior of the deterministic
case.

We then investigated the effects of load changes in the
middle of the computation when node merges were not used.
We assume that 50%, 20%, and 10% of the nodes change their
capacity. A node splits if it can no longer meet the deadline
because its load now exceeds its capacity. As we can see from
the numbers in Table I, the average utilization diminishes.
Figure 6 gives some of our results graphically.

If monitoring the progress at a node discovers that its
capacity has increased, we try to merge this node with its
youngest child, which is the one with highest node identifier.
If the load of both nodes can be handled at the parent, then
we free the child. With this operation, we obtain utilization
numbers after a wave of capacity changes that are statistically
indistinguishable from the utilization numbers before the wave
of capacity changes. We do not give before and after graphs
because the corresponding curves are indistinguishable. We
used quantitative statistics to calculate 95% confidence inter-
vals to ascertain this, but we present here only a qualitative
statistics in Figure 7. There, we plot the node utilization before
and after a wave of random capacity changes and see that about
half the utilization values improve and about half deteriorate
after the change. The utilization oscillates ±0.5% around
100% without any discernible pattern safe for differences in
the amplitude. This makes the case for the assertion that our
structure deals well with a wave of capacity changes.
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Fig. 7: Relation of node utilization after and before a capacity
change affecting 50% of all nodes using a beta distribution
with shape parameters 2 and 2 (left) and 2 and 10 (right).

IV. RELIABILITY EVALUATION

Failure tolerance is based on the existence of buddy groups.
Periodically, all members of a buddy group distribute an
aggregation of the scan results so far and the range of the
records scanned to all other members of the group. We call
the time between these distributions a working window. If a
buddy group decides that a node is no longer responsive (and
has presumably failed or become unreachable), they create
a replacement node. The replacement node obtains the latest
aggregation result and the range of already scanned records
from the surviving members of the buddy group and starts
scanning at the end of the scan range.

In the aggregation phase, nodes that are not sending their
accumulated results are also probed and possibly restarted.
This happens if a complete buddy group has become unreach-
able. Since in this case no interim results are available, the
calculation at these nodes has to start fresh. This happens only
rarely and the system can use more nodes for these calculations
in order to terminate earlier.

A. Cloud Failure Models
An accurate, general failure model for nodes in a cloud

data center does not exist. Vishwanath and Nagappan studied
hardware failures in a datacenter and found that disk drives
were the dominant failure cause [36]. They also found that a
server who suffered one disk failure is more likely to suffer
another one. Temperature can be a major reason for this
observation and can even have a stronger effect [33]. For
the time length that we are studying (compute jobs that take
tens of minutes or maybe a couple of hours), the resulting
effect would still be slight. Nagappan, Peeler, and Voulk also
observed temporal peaks of unavailabilities at the application
level, namely for the virtual computing lab) [30]. Rabkin
and Katz monitored six months of a Hadoop ecosystem and
identified misconfigurations and bugs as the major causes of
failures [32]. Two incidents show that cloud failures can be
drastic and lead to complete outages. Amazon’s EC2 suffered
an such an outage in 2011 through a human error causing
a misconfiguration and an automatic misdiagnosis resulting
in massive recovery effort for servers that had not failed
[1]. Google suffered a massive service interruption to Gmail
in 2009 when routine maintenance resulted in a larger than
expected change in the traffic load at some routers, who
became overloaded and unresponsive. [7].

While hardware failure apparently follows a Weibull distri-
bution, our short time frames (at the most a few hours) allow
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Fig. 8: Probability of loss of at least one complete group with
10000 nodes depending on individual failure rate r .

us to assume constant failure rates. At least some software
failures such as misconfigurations appear to lead to large or
even catastrophic outages. In the absence of better information
for modeling, we test our reliability scheme against two differ-
ent scenarios. The first is a scenario where a large proportion
of nodes suddenly becomes unavailable. The second scenario
assumes independent failures at a given failure rate and models
failures as a Poisson process. The truth is some combination
of both scenarios and a scheme that is reasonably resistant to
both should do well for the general failure pattern. Finally, a
massive service disruption at the scale that were suffered by
EC2 and Gmail is not controllable.

B. Consequences of related failure

A related failure will occur at a portion of r of all nodes.
Besides the usual physical reasons (such as failure of central
network equipment), this failure model occurs if the data
center administrator decides that the whole center is in an
unstable state and arbitrarily shuts down a number of virtual
machines. The probability that a group of k buddies has at least
one surviving member is 1�rk and the probability that all g
groups have at least one survivor is the g-th power of that. The
opposite is the probability that during such a wave of failures
at least one group has lost all intermediate results. We obtain
the characteristic s-curves that show the heavy dependance on
the group size (Figure 8), but reasonable resistance. In these
calculations, we assume that the buddy group size is constant,
whereas in reality a buddy group can be almost twice as big.
The bigger buddy groups however are even more resilient.

C. Consequences of unrelated failure

We assume that nodes fail individually at a rate r . We recall
that N nodes are organized into N/k groups of k nodes. If
during a work window of time tw, no node has failed, the group
passes onto the next window. There is total of nw working
windows. However, if at the end of a work window reports are
missing, then a group membership protocol is triggered with
possible replacement of nodes deemed to have failed. This
takes time tc. If during this time, none of the k involved nodes
fails, then the next work window starts. However, if there was
a failure, then the process is repeated. As in fact calculations
proceed in parallel to running a group membership protocol,
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Fig. 9: Probability of loss of at least one group with 10000
nodes at a given failure rate r during a work and check
window.

this model systematically overestimates the effects of failure
on completion time.

We first calculate the probability that a group completely
fails. We distinguish the following probabilities for the cal-
culation that follows. Let ptw be the probability that all k
nodes fail during a working window. Similarly, pcw denotes
the probability that all k nodes fail during a check window, pw
the probability that at least one, but not all k nodes fail during
a working window and pc the probability that at least one, but
not all k nodes fail during a check window. If there are no node
failures during the working window, then the group survives.
If all nodes fail during the working window, then we have
failure. If some but not all nodes have failed, then we enter
the check phase, consisting of one or possibly more check
windows, since the check phase might need to be restarted.
We have one additional check window with probability pc,
two additional check windows with probability p2

c , three with
probability p3

c etc. This gives for the probability of failure
during one working window and the check phase

P1 = ptw + pw(ptc + pc ptc + p2
c ptc + . . .) = ptw +

pw ptc

1� pc

The probability that no group fails during the calculation is

P = 1� (1�P1)
nwN/k

As we can see from the example in Figure 9, the probability
for loss of a complete group depend heavily on the group size
(as should be expected). The figure of course includes failure
rates that are unrealistically low.

We now calculate the expected delay for a single group.
To have a delay at all, we need to have a partial failure (at
least one node, but not all) during the work window. The
number of repetitions then depends on whether there was a
partial failure during the time for checking and reestablishing
membership. Being a bit pessimistic, we assume that the
number of nodes here has not changed. Mathematically, we
obtain for the average number of times that we have to reenter
checking

pw(1+2pc +3p2
c +4p3

c + . . .) =
pw

(1� pc)2 .
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Fig. 10: Expected added time for group sizes k = 2,4,6,8 for
a work window time of 1, a check membership time 0.1 and
an independent node failure rate of r .
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Fig. 11: Simulated maximum added time for group sizes k =
2,4,6,8 for a computation with ten work windows, each with
a work window time of 1, a check membership time 0.1 and
an independent node failure rate of r for an SDVH structure
with 10,000 (left) and 100,000 (right) nodes.

For realistic failure rates and group sizes, the average
additional time per work window is quite small as the example
in Figure 10 demonstrates. Of course, we need to multiply this
number by the number of work windows. However, these are
average numbers and in a concrete calculation, the additional
time is given by the worst additional time for potentially
tens of thousands of groups. Obtaining an analytic solution
for the expected worst time seems to be beyond our current
mathematical abilities and we turned to simulation instead.

The results are shown in Figure 11 where we simulated
the behavior of an SDVH structure with 10,000 and 100,000
nodes and various group sizes k for a calculation consisting
of ten work windows. Figure 11 gives the average maximum
increase in any of the 10000/k or 100000/k groups and shows
these maxima to be about three times larger than the average
values obtained by multiplying the analytical results displayed
in Figure 10 by the number of windows. In the considered
range for the node failure rate r , these values amount to less
than an additional work window. This allows us to conclude
that we still can guarantee task completion within the limits
provided by the user by taking one additional in ten work
windows into account.

V. RELATED WORK

Scalable Distributed Data Structures (SDDS) have come
into their own in recent years, though not under that name.
Google’s BigTable [6] is an SDDS based on range-partitioning.
Just as RP⇤ [25] more than 10 years earlier, it allows efficient

range queries. The same is true for MS Azur and MongoDB.
Amazon’s EC2 uses a distributed hash table called Dynamo
[11]. VMWare’s Gemfire provides its own hash scheme, etc.
APIs for the popular MapReduce framework [10], in its
Google or Hadoop version, have been created for some of
these offerings.

Linear Hashing was used in the nineties to define a hash-
based SDDS called LH⇤ [24]. Failure tolerance has been
a concern from the beginning and lead to the definition
of various schemes [20], [22], [23], [26]. The current best
practice is LH⇤RS, which offers scalable high availability
[21], [28], so that the resilience to failure increases with the
number of nodes involved. While our proposal has high failure
tolerance, this tolerance is not scalable, in part because it is
not needed. While an SDDS assumes that servers are free, an
SDVS has to pay rent and we are interested in limiting the
number of nodes.

The idea of scalable distributed virtual data structures
developed from using the difficulty of computation as a
flexible protection mechanism in the context of a key recovery
mechanism. The scheme used secret sharing in order to break a
key into shares and store one of them at an escrow agency. To
prevent the escrow agency from storing the key explicitly, the
escrow agency is only given a hash of the key and a range of
potential values. To recover the share, we systematically hash
all values in this range until we have found the inverse of the
hash and hence the key share [15], [19]. Scalable distributed
virtual data structures as a method to allocate resources to
the solution of some integer optimization problems were first
presented in 2014 [16]. Here, we study the impact of capacity
changes and failure tolerance.

The idea of grouping processes in a distributed system into
groups that monitor each other is fundamental and has become
an accepted tool for reliability in distributed systems, despite a
basic, negative result [5]. While the use of replica and the topic
of replica placement is important for P2P system, there seems
to be very little literature on how to form small groups of
peers. Slicing in P2P systems comes the nearest, but in general
creates much larger groups [13]. The absence of literature
might be because the use of replica only already solve the
problem for P2P systems.

Since our proposal is not using the cloud in a traditional
way, previous work on cloud failure tolerance does not apply
directly. For instance, Dai and colleagues note that grid users
care about services that they are using instead of the resources
and this is even more the case for cloud services. They there-
fore develop a holistic model for calculating the probability
that a cloud service can successfully complete [8], [9]. Similar
models are given by Silva et al. and by Thanakornworakij [34],
[35]. Jhawar and Piuri advocate fault tolerance as a service,
provided possibly by the cloud provider [17].

VI. CONCLUSIONS

We have presented SDVH, a failure tolerant, self-organizing
data structure for brute force calculations in the cloud and
have shown it through analysis and simulation to be a feasible



way to solve optimization problems through brute force. Our
method extends the range of solvable problem instances by the
number of virtual machines that one can afford to rent. For a
zero-one integer optimization problem, this increases the num-
ber of variables from 10 (1024 nodes) to 20 (1048576 nodes).
The data structure uses a key feature of cloud computing, the
capability to join and remove nodes on demand. It appears
that SDVH is ready for implementation and use.

Future work will concentrate on building an actual imple-
mentation, though the experience with the LH⇤ family suggest
that this is a multi-year effort. We are currently working on a
distributed, robust protocol for the formation of buddy group
with few messages. On the analytical side, native support
for branch-and-bound methods need to be evaluated. We are
planning on using the linear hash tree in order to gather
periodically the globally best seen results and distribute them
to all nodes. These can then evaluate their local problem set to
see whether they have a chance to beat the already seen best
results. The efficiency of this method will be very problem
dependent.
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