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Abstract. Cloud computing allows on-demand access to cheap com-
puting resources. This capability can be used for solving problems
autonomously by complete enumeration. We present here SDVRP a
data structure based on range partitioning that allows to autonomously
divide the computing tasks to as many nodes as are needed to meet a
user-imposed dead-line (in the order of minutes) despite heterogeneity
of nodes. The data structure monitors itself to deal with failures and
changes in node capacities. We use simulation for a proof-of-concept of
this data structure.
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1 Introduction

Cloud computing has put inexpensive, massively distributed computing at the
hands of the masses. If an organization can rent an almost unlimited amount
of computing power in various clouds for short blocks of times (ten minutes),
then we can use this enormous, temporary computing power to tackle classical
optimization problems through complete enumeration, trading cheap on-demand
computing power for the more sophisticated, classical algorithms [14]. Take as
an example a database that needs to solve a knapsack problem with 50 variables.
It took us 15.6 ms to solve a 15 variable knapsack problems on a single core by
complete enumeration. The 50 variable problem would then take about 100 days
on the single core, but if we can distribute the work over 15000 nodes, it would
take less than 10 min. If Google Cloud would rent cores for 10 min only, it would
cost $60.00.

We extend here this previous work by presenting a dependable version of
a Scalable Distributed Virtual Data Structure (SDVDS), explained in Sect. 2,
called Scalable Distributed Virtual Range Partitioning (SDVRP) (Sect. 3). In
Sect. 4 we protect SDVRP against non-byzantine node failures that can upset
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2 S. Grampone et al.

the SDVRP’s load distribution or overlook an optimal value if not dealt with.
Section 5 evaluates failure resilience. Section 6 gives the related work and Sect. 7
concludes.

2 Scalable Distributed Virtual Data Structures

Scalable Distributed Virtual Data Structures (SDVDS) distribute the work
involved of complete enumeration over a large number of nodes in a cloud. We
envision them to be used in conjunction with databases and similar applications
such as business intelligence decision tools. We now define a complete enumera-
tion problem:

Definition 1. A complete enumeration problem consists of a (record) range I =
{N0, N0+1, . . . Nl} ⊂ N and an objective function φ : I −→ R. A solution to a
complete enumeration problem is a value ι ∈ I that maximizes φ, i.e. φ(ι) =
max({φ(x)|x ∈ I}.

An SDVDS solves a complete enumeration problem in phases. The user
(application) generates a file scheme SF that describes (I,φ) and hands it to
a coordinator node. The coordinator node is only used to begin the process and
to communicate the result to the user application and thus does not constitute
a bottleneck. In the set-up phase, the data structure allocates a sufficient num-
ber of nodes to guarantee finding a solution in a maximum time Tmax specified
by the user (application). Because of multi-tenancy, the speed at which nodes
can evaluate φ is not constant. Each node therefore evaluates its capacity, the
number of records it can evaluate and compares it with its load L, the number
of records assigned to it for evaluation. If its capacity is smaller than its load, it
reacts, often by recruiting another node to the data structure and then dividing
its load with the other node. The set-up phase overlaps with the scan phase,
where each node evaluates its assigned range of records ⊂ I. Each node also
monitors its speed, since the node capacity might not remain constant. At the
end of the scan phase, each node sends its value to a predecessor node, which
in turn agglomerates the results send to it by selecting the ι ∈ I with max-
imum value φ(ι). This termination phase finishes when the original node has
processed the messages from all of its direct child nodes as well as its own set
of records. We previously described the scan phase as having the nodes materi-
alize the virtual records and scan them in order to provide the parallelism with
Scalable Distributed Data Structures, but this relationship is not necessary in
order to understand the basic functioning of the data structures [14]. Different
data structures with different properties can be obtained by changing the way
in which the record range is divided.

Any SDVDS definition consists of a definition of all the phases, but does
not provide a description of the evaluation. An SDVDS is defined by (1) a node
allocation process, usually through splitting; (2) an allocation of enumeration
ranges to nodes; and (3) the set-up of a hierarchy for reporting the partial
results and agglomerating them, and returning them to the user. The second

A
u

th
o

r 
P

ro
o

f



A Dependable, Scalable, Distributed, Virtual Data Structure 3

Fig. 1. A small SDVRP structure for the range of 0 . . . 216.

and the first step can usually be combined in a single step. An algorithm for an
SDVDS consists of (1) a definition of the enumeration range ⊂ N; (2) instance
extraction, which is a method for creating an instance of a possible solution from
an index within the range; and (3) an evaluation function.

For example, if we solve a 0–1 integer optimization problem with 40 variables,
the range is R = [0, 240 − 1], the instance creation assigns to variable xi(n) the
value of bit i in a number n ∈ R, and the evaluation function ascertains first
the truth of a conjunction of inequalities of form φj(x1, . . . , x40) < mj and then
evaluates the optimization function.

3 SDVRP

Scalable Distributed Virtual Range Partitioning (SDVRP) is a SDVDS based on
RP*, the scalable distributed data structure that provides range partitioning. It
assigns contiguous sub-ranges of the record range to the nodes. Figure 1 gives a
very small example. Each node maintains a left and a right neighbor. A node can
move load to one of its neighbors while maintaining the contiguity of the range
of records assigned to it. The data structure starts with a single node to which
we assign the complete original range. After evaluating its capacity, the node
(in all likelihood) decides that its capacity is not sufficient and splits. By local
decisions only, the data structure acquires the nodes necessary to perform the
enumeration phase within the user-set limit. At all times, the nodes are arranged
in a linear list such that consecutive nodes have contiguous ranges of records to
evaluate.

3.1 Node Allocation and Subrange Assignment

A node always splits if its load is larger than its capacity. The new node is
randomly inserted to the left or to the right of the splitting node. The load is
then equally divided between between the splitting and the new node. It takes
maybe a second to ascertain the capacity of a node with reasonable accuracy.

Our simulation results in Sect. 5 show, this simple splitting mechanism can
be easily improved by trying to use free capacity at a neighbor. In the improved
splitting algorithm, a node that needs to split contacts one of its neighbors at
random. If this neighbor has free capacity, it takes over part of the range of the
splitting node to have its load equal its capacity. The splitting node then tries
the same load shifting with the other neighbor. It is possible but unlikely that
the splitting neighbor has reduced its load to zero, in which case it deallocates
itself.
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4 S. Grampone et al.

As always in distributed systems, the algorithm designer needs to prevent
race condition. In our algorithm, a node only interacts with its direct neighbors.
A node acquires a lock on its neighbor which cannot interact with its other
neighbor until the first interaction has finished.

3.2 Result Agglomeration Hierarchy

All nodes but the original node (which becomes the coordinator node) are allo-
cated by another node which becomes its parents. This generate a tree structure
that becomes the agglomeration hierarchy. At the end of its scan phase, each
node sends its result to its parent, which combines the results of its children
with its own and sends the combined result to its parent. The coordinator node
sends the result to the user application.

3.3 Fast Allocation

The allocation process of the node is not instantaneous. Each node uses a second
or so to assess its own capacity and bases a decision on whether to split on the
relation between assigned load and capacity. However, at the beginning of the
allocation phase, it is clear that nodes will split. As a variant, we therefore
propose pre-splitting. The coordinator node determines its load to capacity ratio
and decides on a minimum number of nodes necessary. The minimum number
is calculated using a safe, upper bound based on its capacity. Thus, if we use
assume that node capacity is less than twice the capacity C0 of the coordinator
node, then the number N of nodes needed depends on the total load L by
N > L/(2C0). Since setting up that many nodes in one step also takes time, the
coordinator requests M nodes and assigns to the them the enumeration range
partitioned into M pieces. Each of the M nodes then allocates N/M new nodes
itself that become its children.

4 Providing Failure Tolerance

Cloud nodes are not meant to be very reliable. Instead, the application that uses
cloud resources has the task to provide the failure tolerance it needs. Since cloud
resources are commodities, the alternative would be a one-size-fits-all strategy
that would not deliver for some applications or over-provision for other appli-
cations. According to Birman, it is even considered acceptable for a data center
administrator to randomly shut down nodes in order to escape from an unstable
situation [4].

Failure tolerance for distributed complete enumeration task is different than
for many other applications. While an adversary might destroy a complete cal-
culation by giving a false optimum and causing the other nodes to throw away
their work, a byzantine malfunction for such a simple programming pattern is
unlikely. If we can assume (as we argue that we can) that nodes do not create
false results by either overlooking a local optimum or by reporting one where
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A Dependable, Scalable, Distributed, Virtual Data Structure 5

Fig. 2. A time line of the handling of a node failure. All nodes divide their work into
work windows and send a resumé of their results to all other nodes in the group. The
figure only shows the updates sent by Node 4. When Node 4 later fails, the failure of
receiving the latest resumé or the lack of acknowledgment to resumés sent to Node 4
leads to a replacement of the node. The replacement node is brought up to the point of
the last resumé of Node 4 so that the work of the first three work windows is not lost.

none exist, then the only thing that can go wrong is in the division of labor by
the nodes. Complete enumeration is an “at least once” task. If the data structure
assigns part of the range to two nodes (for example because it wrongly assumed
that one has failed), then the only damage consists performing the same work
twice and having to pay the rental costs of the superfluous node. The validity of
the overall result is not affected.

Second, the result of a a partial enumeration can be resumed in very little
space. If a node has scanned a subrange, the results of this scan can be subsumed
in a description of the range scanned (usually the upper and the lower bound),
and the pair (ι,φ(ι)) consisting of the argument and best value seen so far. We
call this the resumé of the partial evaluation at a node. Each resumé contains
additionally information about the node such as the addresses of its neighbors
and in case of the coordinator node, the address of the application. It functions
essentially as execution checkpoints in languages such as Erlang or Scala.

In order to provide failure tolerance, we use the old idea of process groups [3]
that has several processes in a distribute system monitor each other and provide
solutions if one process has failed. In our setting, we divide the nodes into groups,
which we call buddy groups. Buddy groups run a distributed membership and
consensus protocol such as a version of Paxos or Raft [5,16,21]. We use the
sending of resumés as a heart-beat.

In more detail, each node divides its work into work windows of about equal
time (such as one minute). At the end of a work window, the node sends a
resumé of its scan results up to now to all other nodes in the buddy group.
Resumés should be small; in general, they will consist of the range scanned and
the argument of the best result(s) seen in this range. If a resumé from another
buddy group member does not arrive in time, then the membership protocol
is triggered to ascertain whether the node has in fact failed. The buddy groups
replaces a failed node with a new node requested from the cloud. The replacement
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6 S. Grampone et al.

node resumes the work of the failed work from the moment it sent its last resumé
and does not start over, Fig. 2. Note that the resumé contains all the information
needed by the replacement node.

Buddy group size is limited by the difficulties of running a membership pro-
tocol, since these protocols do not scale well, but they should not be so small
that failure of all nodes in a buddy group in relatively short time is an event
that is worth while to worry about. The splitting algorithm actually makes it
unlikely that neighboring nodes are allocated immediately after the other, so
that it is unlikely that neighboring nodes are physically located in the same
server. We assume that buddy group sizes between four and seven provides the
needed reliability without creating too much overhead.

Since our data structure is one-dimensional, forming groups is quite simple.
A näıve solution would have the leftmost node starts a counting process that
assigns the first k nodes to the first group, the second k neighbors to the second
group, etc. and deals with a last group that is smaller than k by merging it with
the previous group. This nave algorithm is perfectly suited to small instances,
but would take too long for a large data structure.

A more efficient algorithm generates buddy groups by local coagulation. After
a node has finished the allocation phase, it becomes leader of a budding buddy-
group. Each buddy group aims at having a membership between four and seven
nodes. If it does not have the required number of nodes, the leader associates
the group to one of its neighboring groups. If the resulting group has more than
seven elements, it splits into two contiguous parts, each having at least four
elements. This simple procedure works rapidly, guaranteeing that each group
reaches the required amount of nodes in at most three join attempts. We avoid
race conditions by locking leaders that are negotiating a merger.

5 Evaluation

5.1 Variability and Multi-Tenancy

We use simulation to evaluate the construction principles of SDVRP. First, we
evaluated the effects of node capacity variation on node utilization. Node utiliza-
tion (the ratio of total load divided over total capacity) measures the inefficiency
of our work assignment algorithm. Given the nature of cloud computing, where
resources are cheap, but are not free (as in P2P), we want utilizations over 50 %,
but do not worry too much if they are not close to 100 %. We modeled variation
in the capacity of a node by using the beta distribution with parameters α = 2
and β = 2 to generate capacities distributed between [0.5, 1.5], [0.75, 1.25] and
[0.9, 1.1].

As Fig. 3 shows, the utilization oscillates between 0.5 and 1 with peaks where
the initial load is close to a power of two. If there is no variation and all nodes
have capacity exactly one, then the resulting utilization graph is a sawtooth
graph. The utilization is one if the initial load is an integer power of two, and
1/2 if the load is increased by an infinitesimal amount, since in this case all
nodes have to split.
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A Dependable, Scalable, Distributed, Virtual Data Structure 7

Fig. 3. Utilization u using the basic node splitting scheme depending on the load N

As the capacities vary more, the sawtooth curve flattens out, but oscillation
in the utility still occurs. We observed the same behavior when we experimented
with different beta distributions, even if the distributions were no longer sym-
metric, i.e. when the parameters α and β of the curve were not equal.

If we used the more sophisticated splitting algorithm, we still observe oscilla-
tions with periods given by integer powers of two, but the behavior now is more
involved, especially if we used smaller variations. In general, the more sophisti-
cated splitting algorithm results in appreciable higher utilization.

We also compared the utilization with the one obtained after 90 % of the
nodes change capacity and use the advanced algorithm to rebalance the load. The
rebalancing is not entirely successful, but the difference is minute for the smaller
variations in node capacity. Figure 4 gives our results. We used a light-gray fill to
indicate the difference of the before and after values of the utilization. We can see
that the difference becomes small as we move to systems with less variability, but
the wave of changes that we introduced definitely lower the utilization, though
not by much.

5.2 Reliability

An accurate, general failure model for nodes in a cloud data center does not
exist. Two incidents show that cloud failures can be drastic and lead to complete
outages. In 2011 an automatic misdiagnosis to a bad configuration resulted in
a massive recovery effort for servers that had not failed [2]. Gmail suffered a
massive service interruption in 2009 when routine maintenance resulted in a
larger than expected change in the traffic load at some routers, who became
overloaded and unresponsive [7].

Cloud outage based on hardware failure follow a Weibull distribution, but at
the scale of minutes, failure rates are constant. In the absence of better informa-
tion for modeling, we test our reliability scheme against two different scenarios.
The first is a scenario where a large proportion of nodes suddenly becomes
unavailable. The second scenario assumes independent failures at a given failure
rate and models failures as a Poisson process. The truth is some combination of
both scenarios and we need to test our scheme against both extremes. Finally,
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,

,

Fig. 4. Utilization u using the advanced node splitting scheme depending on initial
load N. The upper graph shows the original utilization, the lower graph the utilization
after 90 % of the nodes changed capacity. The node capacities vary between 0.5 and
1.5, 0.75 and 1.25, 0.9 and 1.1, and 0.95 and 1.05 respectively. The x-axis is logarithmic
to bring out the oscillatory behavior.

,

Fig. 5. Maximum number of restarts of a node’s evaluation depending on the total
number of nodes employed (x-axis). The failure rate during a time unit is a high 0.01
(left) and a more realistic 0.0001. If a time unit is a minute, this corresponds to a mean
time to failure of less than two hours and 167 hrs. The calculation is slated to take 10
and 20, respectively, time units. We give error bars at the 99 % confidence level based
on dividing the simulation runs into 20 batches.

a massive service disruption at the scale that were suffered by EC2 and Gmail
is not controllable.

We first look at the effects of independent node failures. Typical maximum
computation time is in the order of minutes or at most an hour, and at this
scale, time between node failures can be assumed to be exponentially distributed.
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A Dependable, Scalable, Distributed, Virtual Data Structure 9

We first determined the maximum number of restart that a single node would
suffer in a system with N nodes, Fig. 5. Our experiment assumed a high failure
rate of 1 % per time unit. The total calculation is broken into ten and twenty
work windows respectively. Each failure has to be discovered (usually at the
end of the work window, unless we change the protocol to monitor nodes more
aggressively) and the new node has to be allocated (and its load possibly partially
distributed if its capacity is lower than its failed predecessor). Still, even at
unrealistic node numbers of a million or more and a very high failure rate per time
unit (corresponding in order of magnitude to a minute), the most the calculation
is slowed down is by less than a fourth of the total time. Since a node suffers a
double failure during its ten or twenty work windows only very rarely (or rather,
the replacement node for a failed node suffers itself another failure during the
rest of the work), we can allocate two instead of one replacement node to bring
the maximum time to be spend for resuming work on a failed node to two work
windows plus some allocation time.

Fig. 6. Probability (P) that at least one buddy group has completely failed if a portion
ρ of the nodes in an ensemble with 10,000 (left) and 1,000,000 nodes (right) has failed.

We now consider the effects of a wave of node failures. We model this phe-
nomenon by assuming the existence of a condition that will cause a portion ρ of
all nodes to fail during a work window. If there is a total of N nodes and the
buddy group size is b, then the probability that all b members of a single group
fail is ρb. The total number of groups is N/b, so that the probability that at least
one group has failed is

1 − (1 − ρb)N/b

This results in buddy group loss probabilities that quickly shift from almost
zero to almost one, Fig. 6. The total number of nodes is – as has to be expected –
very influential. For very large number of nodes, the structure does have a sig-
nificant probability of loosing a complete buddy group with reasonable outage
rates ρ. This will be noticed at the end of the calculation which will then be
delayed by having to redo the work of the lost buddy group(s). The structure
needs to be made more failure tolerant then. There are two possibilities. First,
we can restart the work originally assigned to the lost group, but divide it over
many more nodes in order to loose not that much time. The other possibility is
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10 S. Grampone et al.

to form buddy groups among buddy group leaders. Since buddy group leaders
are replaced if they fail, a member of a higher level buddy group only vanishes
if all its members in the lower level buddy group have disappeared during a
working window, which happens at a rate of ρb.

6 Related Work

Complete enumeration has been a tool of desperation since the beginning of
solving optimization problems on computers. Scalable Distributed Data Struc-
tures (SDDS) were developed in the nineties to marshal the resources of distrib-
uted systems (multicomputers) for databases supporting different modes of data
access such as linear or extensible hashing [13,20] search trees [15], range queries
[18], or R-trees [11]. Much research in SDDS was devoted to provide failure tol-
erance [17]. Scalable Distributed Virtual Data Structures apply these scans not
to records generated by a user but to virtual records, generated directly from
the record identifier [14].

P2P systems try to harvest the idle resources of computers connected to the
Internet. Early work defined distributed hash tables (Chord, Pastry, Tapestry) to
overcome the same scalability problems as SDDS in a more anarchic environment
and resulted in mature, efficient structures such as Skip graphs [1] and the Willow
DHT [24]. Key is a sophisticated metadata overlay such as SOMO [25]. The
difference between our work and failure resilience for P2P systems is that P2P
systems already use extensive replication to allow access to data and only need
to react if failure rates are too high, whereas we need the results of the work
assigned to all nodes.

Cloud computation targets a setting closer to the multicomputer environment
envisioned for SDDS and many SDDS structures have come into their own,
though not under their original name. Google’s BigTable [6] is an SDDS based
on range-partitioning, but with more functionality than RP∗ [19]. The same
is true for MS Azure and MongoDB. Amazon’s EC2 uses a distributed hash
table called Dynamo [10]. VMWare’s Gemfire provides its own hash scheme, etc.
The novelty of our work lies in applying the scan functionality of SDDS to a
completely different type of problem.

The idea of grouping processes in a distributed system into groups that mon-
itor each other is fundamental and has become an accepted tool for reliability in
distributed systems. While the use of replica and the topic of replica placement
is important for P2P system, there seems to be very little literature on how to
form small groups of peers. Slicing in P2P systems comes the nearest, but in
general creates much larger groups [12].

Since our proposal is not using the cloud in a traditional way, previous work
on cloud failure tolerance does not apply directly. For instance, Dai and col-
leagues note that grid users care about services that they are using instead of
the resources and this is even more the case for cloud services. They there-
fore develop a holistic model for calculating the probability that a cloud service
can successfully complete [8,9]. Similar models are given by Silva et al. and by
Thanakornworakij [22,23].
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A Dependable, Scalable, Distributed, Virtual Data Structure 11

7 Conclusion

We presented here a proof-of-concept for a Scalable Distributed Virtual Data
Structure based on Range Partitioning that is failure tolerant. It assumes that
cloud providers will eventually rent nodes for short times, controlling the demand
by setting rental rates depending on the current demand. SDVDS are built on
the principle of maximum autonomy. We applied this philosophy to the imple-
mentation of failure tolerance.

SDVDS extend the maximum size of optimization problems without the need
to buy and administer special hardware. They will provide a very simple pro-
gramming interface, as one only has to provide the evaluation function and define
the enumeration space. The next step is the implementation.
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