
Reliability Mechanisms for Very Large Storage Systems

Qin Xina,†

qxin@cs.ucsc.edu
Ethan L. Millera,†

elm@cs.ucsc.edu
Thomas Schwarz, S.J.b,∗

tschwarz@calprov.org
Darrell D. E. Longa,†

darrell@cs.ucsc.edu

Scott A. Brandta,†

scott@cs.ucsc.edu
Witold Litwinc,‡

Witold.Litwin@dauphine.fr
aUniversity of California, Santa Cruz

bSanta Clara University
cUniversité Paris 9 Dauphine

Abstract

Reliability and availability are increasingly important
in large-scale storage systems built from thousands of indi-
vidual storage devices. Large systems must survive the fail-
ure of individual components; in systems with thousands of
disks, even infrequent failures are likely in some device.
We focus on two types of errors: nonrecoverable read er-
rors and drive failures. We discuss mechanisms for detect-
ing and recovering from such errors, introducing improved
techniques for detecting errors in disk reads and fast re-
covery from disk failure. We show that simple RAID cannot
guarantee sufficient reliability; our analysis examines the
tradeoffs among other schemes between system availabil-
ity and storage efficiency. Based on our data, we believe
that two-way mirroring should be sufficient for most large
storage systems. For those that need very high reliabil-
ity, we recommend either three-way mirroring or mirroring
combined with RAID.

1. Introduction

System designers have been making computer systems
with better performance, lower cost, and larger scale over
the last 20 years, but have not emphasized fault tolerance,
high availability and reliability in most designs. Siewiorek
and Swarz [20] noted four reasons for an increasing con-

†Supported in part by Lawrence Livermore National Laboratory, Los
Alamos National Laboratory, and Sandia National Laboratory under con-
tract B520714.

∗Supported in part by IBM Research Grant 41102-COEN-RSCH-IG-
IG09.

‡Supported in part by the research grants from Microsoft Research,
and from the European Commission project ICONS project no. IST-2001-
32429 and the SCU IBM grant 41102-COEN-RSCH-IG-IG09.

cern on fault tolerance and reliability: harsher environ-
ments, novice users, increasing repair costs, and larger sys-
tems.

As storage systems scale up, the use of more devices
increases both capacity and bandwidth, but it also makes
disk failures more common. In petabyte-scale file sys-
tems1, disk failures will be a daily (if not more frequent)
occurrence—data losses with this frequency cannot be tol-
erated. Moreover, disk rebuild times are becoming longer
as increases in disk capacity outpaces increases in band-
width [7], increasing the “window of vulnerability” during
which a second disk failure would cause data loss. At the
same time, the increase in the total capacity and bandwidth
of a storage system increases the likelihood of nonrecover-
able read errors. Standard disk drives have nonrecoverable
read error rates of 1 in 1014–1015 bits, making it likely that
a large storage system will suffer several such errors per
hour even when no disk has completely failed.

We investigate the reliability issues in a very large-scale
storage system built from Object-Based Storage Devices
(OBSDs) [22] and study these two types of failures: disk
failures and nonrecoverable read errors. An OBSD is a
network-attached storage device [6] that presents an inter-
face of arbitrarily-named objects of variable size. In our
OBSD storage system, files are broken into objects, and
the objects are then distributed across many devices. This
OBSD system is expected to have 2 PB storage capacity in
total. In such a large-scale distributed storage system with
thousands of nodes, there is a high likelihood that at least
one node will be down at any given time. Simply using
RAID is not reliable enough because it takes too long to
rebuild a disk. Assuming the RAID must still provide data
to clients while rebuilding, it would take more than a day to
rebuild a 500 GB disk at 5 MB/second. With five disks in a

1A petabyte (PB) is 1015 bytes.

RAID, the chance of a second failure during a one day re-
build is about 0.1%, resulting in a Mean Time To Data Loss
(MTTDL) from a 2 PB system of less than three years.

Data for a single file may be distributed across hundreds
of individual OBSDs. This distribution must be done in a
decentralized fashion so that there is no central bottleneck
when a single file is accessed by thousands of clients. In-
dividual OBSDs can manage low-level storage allocation
themselves, leaving the problems of allocating data to OB-
SDs and replication to the higher-level file system. If an
OBSD consists of multiple drives, we can use RAID or
other redundancy mechanisms within the OBSD to safe-
guard data. This approach is feasible and could increase
the availability of a single OBSD. However, it is expen-
sive because of the need for custom hardware and software
to manage the redundancy and the need for a higher-speed
network to connect the collection of drives. Additionally,
RAID hardware and software are often complex and have
greater chance of failures. If the non-disk hardware or soft-
ware in an OBSD fails, the data is unavailable, though re-
covery time from such faults is often lower than that for
rebuilding a failed disk. An alternate approach would be to
put the OBSD software on each drive and attach it directly
to the network. This approach might be less expensive in
the long run, but would require more redundancy between
OBSDs to provide a comparable level of reliability.

Instead, in our work, the higher-level file system em-
ploys redundancy. We investigate two mechanisms. First,
we mirror or triple objects. Second, we group objects into
redundancy sets and add parity of the objects to the re-
dundancy sets as in a Software RAID. We use Lazy Parity
Backup (LPB) to convert multiple copies of static objects
into parity objects. Two OBSDs are “related” if they store
objects that are copies of each other or are part of the same
redundancy set. We assume that two OBSDs are related at
most once by making use of optimal data allocation algo-
rithms [9]. The storage system is then optimally “declus-
tered” [2]. This distributes the work of reconstructing the
objects on a failed OBSD optimally through the system.
To speed up this reconstruction, we employ Fast Mirroring
Copy (FMC), where the reconstructed objects are stored on
different OBSDs throughout the system. This will repair an
OBSD failure in minutes instead of days.

To combat nonrecoverable read errors, we store a signa-
ture of an object with the object. When we read an object,
we recalculate the signature and compare it with the stored
signature. This flags bad objects and ensures that failed
reads are recognized, allowing the system to correct the er-
ror in the data.

2. Related Work

There has been some research beyond RAID [4] in re-
liability and recovery for large-scale systems, though most
of it has focused on the use of storage in wide-area sys-
tems. For example, Oceanstore [10, 23] is designed to
have a very long MTTDL (Mean Time To Data Loss),
but at the cost of dramatically increasing the number of
disk requests per block written. Pangaea [17] allows in-
dividual servers to continue serving most of their data even
when disconnected; however, this approach is designed for
wide-area systems, and does not permit files to be striped
across dozens of servers for higher bandwidth. Microsoft’s
FARSITE project [1, 5] investigated the issue of replica-
tion for systems built from relatively unreliable commod-
ity workstations. They focused on reliability, investigat-
ing replica placement strategies that take server reliability
into account. However, FARSITE is not designed for high-
bandwidth applications, and must deal with servers that are
less reliable than those in a single large-scale file system.

Muntz and Liu [15] proposed declustering a disk array
of n disks by grouping the blocks in the disk array in relia-
bility groups of size g. Menon and Mattson [13] proposed
distributed sparing, where the spare disk is broken up and
distributed through the array. In such an array, the reads for
a data rebuild are distributed and so are the writes (to the
spare space).

Other researchers have studied the question of how
much replication is really necessary as well as techniques
to reduce that level of replication. The Recovery Oriented
Computing project [16] is trying to reduce the recovery
time in order to gain higher availability and lower total cost
of ownership. Castro and Liskov [3] propose a secure repli-
cation system to tolerate Byzantine faults and narrow the
window of vulnerability. Litwin and Schwarz [11] present
a family of linear hashing methods for distributing files.
The algorithms reduce the number of messages and scale
to the growth or shrink of files efficiently. Schwarz [18]
has built a Markov model to estimate system availability;
we will apply this model to the scalable file system we are
designing.

3. Nonrecoverable Errors

By storing vast quantities of data on commodity disks,
we will reach the point where the built-in error detection
(and correction) of the disks no longer prevents undetected
errors. For example, error rates of one undetected error
of 1 in 1015 bits are common. A single drive running at
25 MB/s would experience such an error about once a year.
In a large system with 10,000 disks, however, such an error
will occur once per hour somewhere in the system. While

the rate is too small to worry about in a typical commer-
cial database where human errors far outnumber machine-
generated errors, there are applications where very large
amount of data need to be stored without any data cor-
ruption, e.g. large-scale simulation data files for the United
States Department of Energy.

If we were to change the error control code that hard
drives deploy to detect and (hopefully) correct slight data
corruption so that internal errors are flagged instead of cor-
rected, the hard drive would have far more nonrecoverable
read errors, but the rate of an undetected read error would
decrease substantially. Obviously, this is not possible for
commodity hard drives and would even be complicated for
specialized hard drives since the ECC and the magnetic
code are increasingly interwoven [8]. We could embed
the application data into an ECC, but the storage overhead
is high.

3.1. Signature Scheme

We have designed a scheme that detects and corrects
small errors in blocks stored on disk in a large-scale sys-
tem. Our scheme consists of two components: a signa-
ture scheme that flags corrupted data, and a RAID 5-like [4]
mechanism that creates groups of blocks spread across dif-
ferent disks and stores the parity of the block on yet an-
other disk. This redundancy allows us to reconstruct any
corrupted block of data.

To flag corrupted data, we associate a signature with
each data block. The signature is a fixed-length bit string
that is calculated from the contents of the block. A signa-
ture resembles a hash function, and should change if the
block is only slightly changed. We calculate the signature
when we store a data block and store the signature on the
same disk separately from the data block. When we read
the data block, we recompute the signature and compare it
with the previously stored signature value. If the two sig-
nature values agree, we conclude that the block is correct;
otherwise, we flag an error. This error is likely caused by an
incorrect block, but could instead be caused by an incorrect
signature.

To correct data we introduce redundancy into the stor-
age scheme. This can be done by mirroring or triplicating
data, using RAID Level 5 parity, or using erasure correcting
codes such as Even-Odd (which takes n blocks and adds to
them two blocks such that any n survivors among the n+2
blocks suffice to reconstruct all n + 2) or Reed-Solomon
block codes [2, 18]. This redundancy must be on different
disks from the data it protects to guard against disk failure,
but it might be possible to keep it on the same disk if it only
must guard against nonrecoverable errors.

3.2. Galois Power Signatures of Storage Objects

Storage objects are made up of blocks, which in turn
are a string of symbols. Symbols are merely bit-strings of
length f , with f being either 8 or 16. Because of the byte-
oriented character of computer processing, f should be a
multiple of 8, but since we use tables of size 2 f , f should
not be too large either.

3.2.1. Galois Fields Galois fields are a well known al-
gebraic structure consisting of a finite set, for our purposes
the set of all bit-strings of length f , and two operations,
addition and multiplication. We use the usual symbols for
these operations. We also have two special elements, the
zero, denoted by 0 and in our case identical with the string
00 . . .00 of f zeroes, and the one, denoted by 1 and iden-
tical with the string 00 . . .01. The same algebraic laws in-
volving these two elements and the two operations hold as
we are used from calculations in the real or complex num-
bers. For example, always ab + ac = a(b + c) and always
0a = 0. Mathematically, Galois fields are determined by
the number of elements in them. Since there are 2 f differ-
ent bit-strings of length f , we denote our Galois fields by
GF (2 f). Addition in G F (2 f) is the exclusive-or of the
bit strings. This gives a new rule, since for all a ∈ G F (2 f)
a+a = 0, so that every element is its own negative.

Multiplication is more complicated to implement. Our
implementation uses logarithm and antilogarithm tables
with respect to a so-called primitive element α . An element
α is primitive if all powers α i, 0≤ i≤ 2 f −1 are different.
In consequence, each non-zero element β can be written as
β = α i as a uniquely determined power i (0 ≤ i ≤ 2 f −1).
We then write i = logα(β) and β = antilogα(i). Primi-
tive elements exist in abundance within a Galois field. The
product of two non-zero elements β and γ is

β · γ = antilogα(logα(x)+ logα(y))

In this formula, the addition is taken modulo 2 f −1 and the
logarithm and antilogarithm tables take up 2 f −1 entries of
size f bits.

3.2.2. Galois Power Series Signatures (GPSS) Our
signature consists of n components of length f . We first
define a single component. We write the page as a series
P = p1 p2 p3 . . . pl of l symbols (consisting of f bits each).
Let β be an element of G F (2 f). Define

sigβ (P) =
l

∑
µ=1

pµ β µ−1

and call it the β signature of page P. Obviously, sigβ (P)
is a single symbol. Now, let α be a primitive element of

GF (2 f). We define the n-fold α-signature to be

sigα,n(P) = (sigα(P),sigα2(P), . . . ,sigαn(P))

. It is a vector of n symbols, that is, a bit-string of length n f .
We tabulate a list of important properties of sigα,n. Useful
properties of the single symbol signature are also contained
in [19], the proofs are in [14], [12] and forthcoming pub-
lications. In the following, we assume that a page (a block)
has at least n signatures and that n < 2 f −1.

1. The probability that two (uniformly distributed) ran-
dom pages have the same n-fold α-signature is 2−n f .

2. A change in n page symbols always changes sigα,n.

3. If we concatenate page P of length l with page Q
of length m then sigβ (P|Q) = sigβ (P)+ β l · sigβ (Q).
Thus, sigα,nof the concatenation can be calculated
from the sigα,nof the concatenants and their length.

4. If we change page P by modifying r characters start-
ing at position s and if we call ∆ the string of changes
(∆ = (δ1,δ2, . . . ,δr) with δi = pnew

i − pold
i) then

sigβ (Pnew) = sigβ (Pold) +β s−1 · sigβ (∆). Thus,
sigα,ncan be calculated from the old page signature,
the signature of the delta-string, and the location of
the change.

5. If we form the parity of a number of pages (made to
be of equal length by padding with zeroes if neces-
sary) then sigα,n of the parity page is the parity of the
sigα,n of the pages. This is even true if the parity is the
generalized parity in a p+q erasure correcting general-
ized Reed Solomon code. This property allows us to
check through the signatures whether the parities are
in sync with the pages that they protect.

These properties are highly useful, but any signature
scheme having them cannot be cryptographically secure.
Since cryptographically secure signature schemes such as
SHA-1 always have a performance disadvantage, algebraic
signatures such as GPSS have much to recommend them.

3.2.3. Implementation The speed of signature calcula-
tion is crucial in many applications. If we were to imple-
ment the signature formulæ naively, the performance would
be quite tolerable, but we can do better. First, we interpret
the page symbols directly as logarithms. This saves a log
table look-up. The logarithms range from 0 to 2 f − 2 (in-
clusively) with an additional value for log(0), which is set
to 2 f − 1. Next, the signature calculations form the prod-
uct with α i, which has i as the logarithm. One does not
need to look this value up either. Finally, we dispense with

SYM signature (pagelen, SYM page0...pagelen−1)
SYM sig ⇐ 0
for i ⇐ 0 to pagelen−1

if pagei 6= 2 f −1
sig⇐ antilog(i+pagei)⊕ sig

return sig

Figure 1. Pseudo-code for the single symbol
signature calculation. The antilog function is
calculated by table lookup, as described in
the text.

the awkward addition modulo 2 f − 1 by doubling the an-
tilogarithm table. We give sample pseudo-code in Figure 1.
Experiments [14] show that loading the antilogarithm table
(of size 256 KB) into cache using the PREFETCH com-
mand for Intel-compatible microprocessors yields substan-
tial performance improvements. The experiments also sug-
gest a slight advantage for f = 16, but did not identify
other significant improvements to the algorithm. The ex-
periments were done on standard 1.8 GHz Pentium 4 ma-
chines, already considered slow in 2003.

4. Disk Failures

Protecting against nonrecoverable disk errors guaran-
tees that individual data blocks are protected, but does not
provide a good protection mechanism to deal with the fail-
ure of an entire disk. As discussed in Section 4.1, a 2 PB
storage system will experience about one disk failure per
day. Since disk capacity is increasing at a faster rate than
disk bandwidth, the time needed to rebuild an entire disk
is becoming longer, lengthening the “window of vulnera-
bility” during which a second disk failure is likely to cause
data loss.

We investigated several redundancy mechanisms and
developed mechanisms for fast recovery in a large-scale
storage system, resulting in lower risk of data loss at an
acceptable storage overhead.

4.1. Redundancy Mechanisms

We assume that our storage system holds 2 PB of data,
and is built from 500 GB disk drives. Such drives are not
yet available, but will be by 2004–2005, assuming that cur-
rent growth rates in disk capacity [7] continue. Note that
a storage system containing 2 PB of data will require more
capacity for redundancy. The ratio between data capac-
ity and total storage capacity is the storage efficiency. We
further assume that our disks have a mean time to failure

Table 1. Cost and overhead of different relia-
bility mechanisms.

Cost ($ million)Method
2002 2005

Storage
Efficiency

Mirror 2 2 0.2 50%
Mirror 3 4 0.4 33%
RAID 5+1 3 0.3 40%

(MTTF) of 105 hours. This is significantly shorter than
that specified by drive manufacturers, which is typically
106 hours, but is longer than the 50,000 hours reported by
sites such as the Internet Archive [21]. For simplicity, we
assume the failure rates of the disks in the system are iden-
tical and independent, though this may not be true if many
disks are from the same manufacturing batch and are run-
ning in the same environments.

We use the term redundancy set to refer to a block group
composed of data blocks or objects and their associated
replicas or parity blocks. A single redundancy set will typ-
ically contain 1 MB to 1 TB, though we expect that re-
dundancy sets will be at least 1 GB to minimize bookkeep-
ing overhead and reduce the likelihood that two redundancy
sets will be stored on the same set of OBSDs.

We consider three methods to configure the organiza-
tion of a redundancy set: two-way mirroring (Mirror 2),
three-way mirroring (Mirror 3), and RAID-5 with mirror-
ing (RAID 5+1). In n-way mirroring, each data block in the
redundancy set is stored n times, with each replica stored
on a different OBSD. Under RAID 5+1, each OBSD con-
sists of multiple disks organized as a RAID 5, and each data
block is mirrored on two OBSDs. Table 1 summarizes the
cost and storage efficiency of the three redundancy schemes
using a current disk price of $1/GB and an estimated disk
price of $0.1/GB in 2005.

4.2. Fast Recovery Mechanisms

When we use any of the redundancy mechanisms de-
scribed above, there is still a small chance that the system
will lose data. For example, Mirror 3 will fail when two of
the three OBSDs in the redundancy set fail and the third
fails while the other two are being rebuilt. We can use one
of two mechanisms to deal with this situation: Fast Mirror-
ing Copy (FMC) or Lazy Parity Backup (LPB).

4.2.1. Fast Mirroring Copy Fast Mirroring Copy
(FMC) quickly backs up blocks in a redundancy set af-
fected by the loss of a disk. Rather than attempting to
immediately rebuild an entire disk, FMC recreates the lost
replicas throughout the storage system. When a disk fail-

Normal Failed Replicating Rebuilding

OBSD 1

OBSD 2

OBSD 3

OBSD 4

Data loss occurs during this time

(a) A second OBSD failure within the window of vulnerability from the
first causes data loss.

OBSD 1

OBSD 2

OBSD 3

OBSD 4

Distributed replica complete
OBSD rebuilt from

distributed replica

(b) By creating a distributed replica before rebuilding the failed OBSD,
the system reduces the window of vulnerability and avoids data loss.

Figure 2. Window of vulnerability

ure is detected, each disk constructs a list of redundancy
sets stored locally that have lost a member on the failed
disk. For each item in the list, the disk causes the con-
struction of a replacement elsewhere in the storage system.
Each OBSD in the system does this in parallel, resulting in
a great speedup over rebuilding a single disk. For exam-
ple, it takes one day to rebuild a failed disk with a capacity
of 500 GB at a rate of 5 MB/sec. However, it only takes
100 seconds to recreate a replica for each of the 500 MB
redundancy sets that were on the failed disk, as long as all
of the copies can proceed in parallel. While we can only
achieve this speed if we carefully arrange redundancy sets
in the storage array, a random placement still yields rebuild
times of minutes instead of tens of hours. Since data is vul-
nerable to a second failure during data reconstruction, as
shown in shown in Figure 2, FMC dramatically increases
the longevity of the data in the storage system by allowing
the reconstruction to use the parallelism inherent in mas-
sive storage system.

The size of the “window of vulnerability” is determined
by the mean time to repair (MTTR) and mean time to fail-
ure (MTTF) for an individual disk, where MTTF �MTTR.
If MTTR is long, then there will be a higher chance that
the other replicas will be lost during the reconstruction of
a failed OBSD. One redundancy set with n replicas dis-
tributed on n OBSDs will fail if there is an overlap in the
failure and reconstruction time among all n OBSDs.

After a failure, FMC creates a new replica for each re-

dundancy set that had a replica on the failed disk. Rather
than create all of the replicas on the replacement disk, how-
ever, FMC attempts to place all of the new replicas on dif-
ferent disks. Since both the remaining good copies of the
affected redundancy sets and the replicas being created are
distributed throughout the storage system, the replicas can
be created in parallel, dramatically reducing the time neces-
sary to recreate a new replica for the data on the failed disk.
We could achieve the same effect by simply keeping more
replicas of all data; however, this approach would require
extra space. Because FMC can create replicas quickly, it
provides nearly the redundancy of an extra replica without
actually storing the extra replica until it is needed.

Figure 3 shows how FMC operates, using an example
with Mirror 2, five OBSDs, and five redundancy sets la-
beled A–E. Each replica stored on an OBSD is identified
by a tuple 〈redundancyset,replicaID〉, where the replicaID
is used to distinguish different replicas belonging to the
same redundancy set. Figure 3(a) shows the initial states
of the five OBSDs and the replicas that they contain. If one
of the OBSDs fails—OBSD 3 in our example—replicas
〈E,0〉 and 〈C,1〉 are lost. When this failure is detected,
OBSD 4 immediately copies E to OBSD 2, creating 〈E,2〉,
and OBSD 1 copies C to OBSD 4, creating 〈C,2〉, as shown
in Figure 3(b). As soon as this copy has completed, the data
that was on OBSD 3 is protected against another failure. In
a storage system with thousands of OBSDs, replication can
proceed in parallel, reducing the window of vulnerability
from the time needed to rebuild an entire OBSD to the time
needed to create one or two replicas of a redundancy set.
If another OBSD were to fail after this process completes
but before the data was restored to the failed disk, no re-
dundancy set would lose data, as shown in Figure 3(c). In
Figure 3(c), OBSD 1 has failed before OBSD 3 has been
replaced; even though two disks have failed in a system
with 2-way mirroring, no data is lost. FMC has created the
replica 〈C,2〉, preventing the loss of data from redundancy
set C that might have occurred with normal 2-way mirror-
ing.

FMC relies on a mapping of replicas to OBSDs that will
guarantee that the replicas of one redundancy set will not
be stored on the same OBSD and that two redundancy sets
share as few OBSDs as possible. This mapping can be done
using a table, which will grow linearly with the number
of redundancy sets, or with an algorithm such as that de-
scribed by Honicky and Miller [9], which reduces the stor-
age required at each client by allowing replica placement
to be computed on the fly.

4.2.2. Lazy Parity Backup Lazy Parity Backup (LPB)
has the same goal—protecting data by replication—but
works by creating parity blocks in the background when
the associated data blocks have not been modified for some

<A,0>

<B,1>

OBSD 0

...

<A,1>

<C,0>

OBSD 1

...

<B,0>

<D,0>

OBSD 2

...

<E,0>

<C,1>

 OBSD 3

...

<E,1>

<D,1>

OBSD 4

...

(a) Original redundancy set layout on OBSDs

<A,0>

<B,1>

OBSD 0

...

<A,1>

<C,0>

OBSD 1

...

<B,0>

<D,0>

OBSD 2

...

<E,0>

<C,1>

 OBSD 3

...

<E,1>

<D,1>

OBSD 4

...

<E,2> <C,2>

(b) Replicas from failed disk redistributed throughout storage system

<A,0>

<B,1>

OBSD 0

...

<A,1>

<C,0>

OBSD 1

...

<B,0>

<D,0>

OBSD 2

...

<E,0>

<C,1>

 OBSD 3

...

<E,1>

<D,1>

OBSD 4

...

<E,2> <C,2>

(c) Second failure does not cause loss of data

Figure 3. Fast Mirroring Copy

time. This method creates RAID-like structures across OB-
SDs. If FMC is used for rapidly-changing data, LPB can be
used for more static data to gain additional reliability with
lower storage overhead. This technique is somewhat sim-
ilar to one used in AutoRAID [24], but operates on a far
larger storage system.

Figure 4 shows how LPB protects data in a small system,
similar to that used in Figure 3. P(d1−−dn) represents the
parity block for data blocks with object identifiers d1 to dn.
Figure 4(a) shows the initial data layout, with each of four
OBSDs having a primary and mirror replica from a redun-
dancy set. In the background, the system generates parity
across the redundancy sets, resulting in the layout in Fig-
ure 4(b). The mirror replica for each redundancy set may
be reused if space is at a premium or may be kept to fur-
ther increase reliability. If an OBSD fails, as depicted in
Figure 4(c), no data is lost even if the mirror replicas are
no longer available. To further improve overall system re-
liability, FMC can be combined with LPB to rapidly create
a distributed replica of a failed disk protecting data with
parity. LPB can use more complex error correcting codes
to generate multiple error correction “replicas” for a given

<A,0>

<B,1>

OBSD 0

...

<B,0>

<D,1>

OBSD 1

...

<A,1>

<C,0>

OBSD 2

...

 OBSD 3

...

OBSD 4

...

<D,0>

<C,1>

(a) Original data layout on OBSDs

<A,0>

<B,1>

OBSD 0

...

<B,0>

<D,1>

OBSD 1

...

<A,1>

<C,0>

OBSD 2

...

 OBSD 3

...

OBSD 4

...

P(A-D) <D,0>

<C,1>

(b) Parity calculated across data on different OBSDs. The replica from
each redundancy set can be reclaimed to save space, or can be retained for
added reliability.

<A,0>

<B,1>

OBSD 0

...

<B,0>

<D,1>

OBSD 1

...

<A,1>

<C,0>

OBSD 2

...

 OBSD 3

...

OBSD 4

...

P(A-D) <D,0>

<C,1>

(c) A single OBSD failure does not cause loss of data.

Figure 4. Lazy Parity Backup

set of data, allowing the system to survive multiple OBSD
failures.

From the example shown in Figure 4, it may seem that
LPB places strict constraints on data placement. In a sys-
tem with thousands of OBSDs, this is not the case. The
only rule that must be enforced is that no OBSD may have
more than one element from a stripe. With a stripe width
of four in a system with five OBSDs, this is a difficult con-
straint. However, a stripe width of ten in a system with
thousands of OBSDs does not suffer a similar difficulty in
laying out data to follow this rule because the stripe width
is a small fraction of the number of OBSDs.

Consistency problems arise when we use FMC or LPB
to make data more reliable, especially for the workload
where data changes rapidly. We can use a signature scheme
or other consistency protocols to maintain data consistency.

Table 2. Parameters for a 2 PB storage sys-
tem.

Parameter Value

Z (total data in the system) 2 PB
γ (recovery rate) 102 GB/hr
N (number of redundancy sets) Z/S
MTTFdisk 105 hours
D (disks in an OBSD RAID 5) 5
S (data in one redundancy set) varies

0 1 2

µ
-(µ+ν)

2µ

ν

-2µ

Figure 5. State Transitions for Mirror 2

4.3. System Availability

Using Markov models, we compared the mean time to
data loss in a 2 PB of Mirror 2, Mirror 3, and RAID 5+1.
The storage system parameters we used in our comparison
are listed in Table 2. We use µ as the failure rate and ν as
the repair rate in figures of state transitions and the calcu-
lations. Here, ν � µ .

Figure 5 shows state transitions for one redundancy set
using the Mirror 2 mechanism, where µ is the failure rate
and ν is the repair rate. State 0 indicates that both OBSDs
that contain the redundancy set are functioning properly; if
either one of them is down, then it goes to state 1; and then
goes to state 2 when the other one is also down while the
earlier failed one has not been repaired yet.

Assuming that there is at most only one failure or repair
happening during a very short time interval ∆t, we find that
MTTDL of one redundancy set is

MTTDLRS−Mirror 2 =
3µ +ν

2µ2 =
ν

2µ2 +∆ (1)

The relative error is
∆

MTTDLRS−Mirror 2
=

3µ
3µ +ν

≈
3µ
ν

(2)

Since µ
ν is very small (10−7 when the size of a redundancy

set is 1 GB), the approximate MTTDL for one redundancy
set under Mirror 2 is

MTTDLRS−Mirror 2 =
ν

2µ2 . (3)

0 1 2

2µ
-(2µ+ν)

3µ

ν

-3µ

3

µ
-(µ+2ν)

2ν

Figure 6. State Transitions for Mirror 3

We then derived the MTTDL of one redundancy set
when the Mirror 3 mechanism is used from the Markov
model shown in Figure 6 in a similar way:

MTTDLRS−Mirror 3 =
2ν2 +7µν +11µ2

6µ3 =
ν2

3µ3 +∆ (4)

∆
MTTDLRS−Mirror 3

=
7µν +11µ2

2ν2 +7µν +11µ2 ≈
7µ
2ν

. (5)

The approximate MTTDL for Mirror 3 and the relative
error are shown in Equations 4 and 5. From these equa-
tions, we see that the approximate MTTDL for a redun-
dancy set in Mirror 3 is

MTTDLRS−Mirror 3 =
ν2

3µ3 . (6)

The Markov model of one redundancy set under
RAID 5+1 is shown in Figure 7(a). In this state diagram,
D is the total number of disks in one RAID 5 and 〈x,y,z〉
indicates that there are x pairs of OBSDs in which both of
them are in operation, y pairs of OBSDs in which one of
the them are in operation and the other one is down, and
z pairs of OBSDs in which neither of the two OBSDs are
working. Here, we refer to the two mirrored OBSDs as a
pair.

State transitions with the RAID 5+1 mechanism are
more complicated than those for Mirror 2 and Mirror 3
since the model goes to the failure state only when two
OBSDs in RAID 5 fail and the two corresponding mirror-
ing OBSDs in another RAID 5 fail at the same time. We
simplify the Markov model by first deriving the failure rate
and repair rate for a pair of OBSDs. We then plug them
in as the failure rate for RAID 5 whose state transition is
shown in Figure 7(b). The derivation is as follows:

MTTDLRS−RAID5 =
(2D−1) ·µRAID5 +νRAID5

D · (D−1) ·µRAID5
2 . (7)

Using Equation 3, we have

µRAID5 =
2µ2

3µ +ν
and νRAID5 = ν . (8)

<D,0,0>

<D-1,1,0>

ν
2Dµ

<D-2,2,0>

(2D-1)µ
2ν

<D-3,3,0>

(2D-2)µ
2ν

<0,D,0>

<D-1,0,1>

<D-2,1,1>

(2D-1)µ
ν

<D-3,2,1>

(2D-2)µ
2ν

<0,D-1,1>

µ

2ν

2µ

3µ

Dµ

2ν

2ν

2ν

Failure

Failure

Failure

µ

2µ

(D-1)µ

(a) State transitions for RAID 5+1

0 1 2

(D-1)µ
-(D-1)µ-ν

Dµ

ν

-Dµ

(b) State transitions for RAID 5

Figure 7. Markov models for RAID 5+1

Thus, we find the MTTDL of one redundancy set under
RAID 5+1 is

MTTDLRS−RAID5+1

=
(3µν +ν2 +(2D−1) ·2µ2) · (3µ +ν)

D · (D−1) ·4µ4

=
ν3

D · (D−1) ·4µ4 +∆ . (9)

The relative error is

∆
MTTDLRS−RAID5+1

≈
6µ
ν

. (10)

The MTTF for RAID 5+1 is approximately

MTTDLRS−RAID5+1 ≈
ν3

4D · (D−1)µ4 . (11)

To compare the MTTDL of the three redundancy
schemes, we used the following equations which approx-
imate (to within 1%) the MTTDL for each of the redun-
dancy mechanisms. MTTF for one redundancy set is just
the MTTF of a disk, (MTTFdisk), so we have

MTTFdisk =
1
µ

(12)

and MTTR (Mean Time To Repair) for a single redundancy
set is:

MTTRRS = S/γ =
1
ν

. (13)

for each of N = Z
S redundancy sets.

For a system with N redundancy sets, since 1
MTTDLRS

is
very small, we have

MTTDLsystem =
1

1− (1− 1
MTTDLRS

)N
≈

MTTDLRS

N
(14)

Using the above equations, we find the MTTDL of the
whole system for each of three mechanisms is as follows:

MTTDLMirror 2 =

MTTF2
disk

2·MTTRRS

N

=
MTTF2

disk · γ
2 ·Z

(15)

MTTDLMirror 3 =

MTTF3
disk

3·MTTR2
RS

N

=
MTTF3

disk · γ
2

3 ·S ·Z
(16)

MTTDLRAID5+1 =

MTTF4
disk

4·D·(D−1)MTTR3
RS

N

=
MTTF4

disk · γ3

4 ·D · (D−1) ·S2 ·Z
(17)

Using Equations 15, 16, and 17 and Table 2, we calcu-
lated the MTTDL for each redundancy mechanism using
different sizes for a single redundancy set, as shown in Fig-
ure 8. For each mechanism, we show MTTDL for both
MTTDLdisk = 105 hours and the manufacturers’ claims of
MTTDLdisk = 106 hours.

4.4. Discussion

Our first result is that MTTDL for the system does not
vary with the size of a redundancy set for Mirror 2, as ex-
pected from Equation 15. Though larger redundancy sets
require more time for recovery, there are fewer of them,
and the likelihood that any redundancy set falls as the total
number of sets decreases. These two effects are balanced
for Mirror 2, so the size of a single redundancy set does not
affect overall system MTTDL. For Mirror 3 and RAID 5+1
mechanisms, however, MTTDL decreases as the size of a
single redundancy set increases. In both cases, the decrease
in reliability due to longer recovery time overwhelms the
increased reliability from having fewer, larger redundancy
sets.

Size of one redundancy set
1 MB 1 GB 1 TB

M
T

T
D

L
of

 th
e

sy
st

em
 (

ye
ar

s)

1

1000

1e6

1e9

1e12

1e15

1e18

1e21

1e24

1e27

Mirror2 (100K hr)
Mirror3 (100K hr)
RAID51 (100K hr)
Mirror2 (1M hr)
Mirror3 (1M hr)
RAID51 (1M hr)

Figure 8. Mean time to data loss in a 2 PB
storage system

Figure 8 seems to indicate that smaller redundancy sets
provide longer MTTDL. However, this approach has sev-
eral limitations. First, overall file system bandwidth will
decrease if redundancy sets are too small because individ-
ual disk transfers will be too small. This sets a lower limit
of 256 KB–4 MB for redundancy sets. Second, we assume
that redundancy sets fail independently. If there are too
many redundancy sets, however, many will share multiple
disks, causing correlated failures. Third, the bookkeep-
ing necessary for millions of small redundancy sets will
be overwhelming. For all these reasons, we believe it is
unlikely that redundancy sets will be much smaller than
200 MB–1 GB.

Disk lifetime is another important factor in calculat-
ing MTTDL for the entire storage system. An order of
magnitude improvement in MTTDLdisk from 105 hours to
106 hours can improve overall MTTDL by a factor of 100
for Mirror 2, 1000 for Mirror 3, and 10,000 for RAID 5+1.
The use of a controlled environment to ensure longer disk
lifetimes will result in a major benefit in overall system re-
liability.

Increasing the recovery rate γ can also improve overall
system reliability. Placing a higher priority on disk transfer
rate and recovering faster will greatly improve reliability
by reducing the “window of vulnerability” during which
the system may lose data. Doubling the recovery rate will
double the reliability of Mirror 2, but will increase the reli-
ability of RAID 5+1 by a factor of eight.

For a system with 2 PB of storage, we believe that
Mirror 2 will provide sufficient redundancy at an accept-
able cost. MTTDL for such a system will be about
30 years regardless of the redundancy set size, allowing us

to use larger redundancy sets to reduce bookkeeping over-
head. Mirror 3 and RAID 5+1 can provide much longer
MTTDL—up to 2×1011 years for Mirror 3, and 1020 years
for RAID 5+1 if the size of one redundancy set is 1 GB. It
is also interesting that when the size of one redundancy set
gets big, close to 100 GB, the reliability achieved by us-
ing Mirror 3 will exceed that achieved by using RAID 5+1.
This, however, assumes a 106 hour MTTF for Mirror 3 and
a 105 hour MTTF for RAID 5+1. Although other schemes
provide much greater MTTDL, Mirror 2 is considerably
simpler to implement than Mirror 3 and RAID 5+1, and
provides good reliability at relatively low cost.

5. Conclusions

We have discussed two major sources of data loss in
large-scale storage systems—nonrecoverable read errors
and disk failures—and have presented mechanisms for
dealing with each. By using signatures on individual disk
blocks and redundancy across multiple storage devices, we
can reduce the risk of data loss. Techniques such as Fast
Mirror Copy further decrease the chance of data loss to
the point where simple two-way mirroring in a 2 PB file
system can still have a mean time to data loss of 30 years
without the use of expensive RAID hardware. If this is
not sufficiently long, techniques such as three-way mirror-
ing and RAID 5 with mirroring can virtually guarantee that
data will never be lost.

The mechanisms proposed and analyzed in this paper
show that high reliability is important for very large-scale
storage systems. However, many questions still need to be
studied. We know the MTTF of the whole system with sev-
eral reliability mechanisms, but we do not know about the
distribution of failures and their variance over a long period
of time. Another interesting issue is the impact of various
replica placement policies on the reliability mechanisms.
We will compare several placement policies and find the
tradeoffs between them. We are also concerned about data
consistency problems when we update data blocks during
the process of fast mirroring copying.

References

[1] A. Adya, W. J. Bolosky, M. Castro, R. Chaiken, G. Cer-
mak, J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer,
and R. Wattenhofer. FARSITE: Federated, available, and
reliable storage for an incompletely trusted environment. In
Proceedings of the 5th Symposium on Operating Systems
Design and Implementation (OSDI), Boston, MA, Dec.
2002. USENIX.

[2] G. A. Alvarez, W. A. Burkhard, and F. Cristian. Tolerating
multiple failures in RAID architectures with optimal stor-

age and uniform declustering. In Proceedings of the 24th
International Symposium on Computer Architecture, pages
62–72, Denver, CO, June 2002. ACM.

[3] M. Castro and B. Liskov. Proactive recovery in a Byzantine-
fault-tolerant system. In Proceedings of the 4th Symposium
on Operating Systems Design and Implementation (OSDI),
2000.

[4] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A.
Patterson. RAID: High-performance, reliable secondary
storage. ACM Computing Surveys, 26(2), June 1994.

[5] J. R. Douceur and R. P. Wattenhofer. Optimizing file avail-
ability in a secure serverless distributed file system. In Pro-
ceedings of the 20th Symposium on Reliable Distributed
Systems (SRDS ’01), pages 4–13, New Orleans, LA, Oct.
2001. IEEE.

[6] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang,
H. Gobioff, C. Hardin, E. Riedel, D. Rochberg, and J. Ze-
lenka. A cost-effective, high-bandwidth storage architec-
ture. In Proceedings of the 8th Interational Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 92–103, San Jose, CA,
Oct. 1998.

[7] J. L. Hennessy and D. A. Patterson. Computer Architecture
– A Quantitative Approach. Morgan Kaufmann Publishers,
3rd edition, 2003.

[8] A. S. Hoagland and J. E. Monson. Digital magnetic record-
ing. Wiley, 2nd edition, 1991.

[9] R. J. Honicky and E. L. Miller. An optimal algorithm for
online reorganization of replicated data. Submitted to the
17th International Parallel & Distributed Processing Sym-
posium, 2003.

[10] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. OceanStore: An architecture for
global-scale persistent storage. In Proceedings of the 9th
Interational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS),
Cambridge, MA, Nov. 2000. ACM.

[11] W. Litwin and T. Schwarz. LH*RS: A high-availability
scalable distributed data structure using Reed Solomon
codes. In Proceedings of the 2000 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 237–248,
Dallas, TX, May 2000. ACM.

[12] W. Litwin and T. Schwarz. Algebraic signatures for scal-
able distributed data structures. Technical Report CERIA
Technical Report, Université Paris 9 Dauphine, Sept. 2002.

[13] J. Menon and R. L. Mattson. Distributed sparing in disk
arrays. In Proceedings of Compcon ’92, pages 410–416,
Feb. 1992.

[14] R. Mokadem. Stockage de données en utilisant les signa-
tures dans les sdds. Technical Report CERIA Technical Re-
port, Université Paris 9 Dauphine, Sept. 2002.

[15] R. R. Muntz and J. C. S. Lui. Performance analysis of disk
arrays under failure. In Proceedings of the 16th Conference
on Very Large Databases (VLDB), pages 162–173, 1990.

[16] D. A. Patterson, A. Brown, P. Broadwell, G. Candea,
M. Chen, J. Cutler, P. Enriquez, A. Fox, E. Kiciman,
M. Merzbacher, D. Oppenheimer, N. Sastry, W. Tetzlaff,

J. Traupman, and N. Treuhaft. Recovery-Oriented Comput-
ing (ROC): Motivation, Definition, Techniques, and Case
Studies. Technical Report UCB//CSD-02-1175, University
of California, Berkeley, Mar. 2002.

[17] Y. Saito and C. Karamanolis. Pangaea: A symbiotic wide-
area file system. In Proceedings of the 2002 ACM SIGOPS
European Workshop. ACM, Sept. 2002.

[18] T. Schwarz. Generalized Reed Solomon codes for erasure
correction in SDDS. In Workshop on Distributed Data and
Structures (WDAS 2002), Paris, France, Mar. 2002.

[19] T. Schwarz, R. W. Bowdidge, and W. A. Burkhard. Low
cost comparison of files. In Proceedings of the 10th In-
ternational Conference on Distributed Computing Systems
(ICDCS ’90), pages 196–201, 1990.

[20] D. Siewiorek and R.S.Swarz. Reliable Computer Systems
Design and Evaluation. The Digital Press, 2nd edition,
1992.

[21] B. Tofel. Personal communication, Aug. 2002.
[22] F. Wang, S. A. Brandt, E. L. Miller, and D. D. E. Long.

OBFS: A file system for object-based storage devices. Sub-
mitted to the 2003 Conference on File and Storage Tech-
nologies (FAST).

[23] H. Weatherspoon and J. Kubiatowicz. Erasure coding vs.
replication: A quantitative comparison. In Proceedings of
the First International Workshop on Peer-to-Peer Systems
(IPTPS 2002), Cambridge, Massachusetts, Mar. 2002.

[24] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP
AutoRAID hierarchical storage system. In Proceedings of
the 15th ACM Symposium on Operating Systems Principles
(SOSP ’95), pages 96–108, Copper Mountain, CO, 1995.
ACM Press.

