
Adjustable flat layouts for Two-Failure Tolerant Storage Systems

Thomas Schwarz, SJ
Department of Mathematics, Statistics, and Computer Science

Marquette University
Milwaukee, Wisconsin

thomas.schwarz@marquette.edu

Abstract—Systems suffer component failure at sometimes un-
predictable rates. Storage systems are no exception; they add
redundancy in order to deal with various types of failures.
The additional storage constitutes an important capital and
operational cost and needs to be dimensioned appropriately.
Unfortunately, storage device failure rates are difficult to predict
and change over the lifetime of the system.

Large disk-based storage centers provide protection against
failure at the level of objects. However, this abstraction makes it
difficult to adjust to a batch of devices that fail at a higher than
anticipated rate. We propose here a solution that uses large pods
of storage devices of the same kind, but that can re-organize in
response to an increased number of failures of components seen
elsewhere in the system or to an anticipated higher failure rate
such as infant mortality or end-of-life fragility.

Here, I present ways of organizing user data and parity
data that allow us to move from three-failure tolerance to two-
tolerance and back. A storage system using disk drives that might
be suffering from infant mortality can switch from an initially
three-failure-tolerant layout to a two-failure-tolerant one when
disks have been burnt in. It gains capacity by shedding failure
tolerance that have become unnecessary. A storage system using
Flash can sacrifice capacity for reliability as its components
have undergone many write-erase cycles and thereby become
less reliable.

Adjustable reliability is easy to achieve using a standard layout
based on RAID Level 6 stripes where it is easy to convert
components containing user data to ones containing parity data.
Here, we present layouts that unlike the RAID layout use only
exclusive-or operations, and do not depend on sophisticated, but
power-hungry processors. There main advantage is a noticeable
increase in reliability over RAID Level 6.

Index Terms—Disk Array Layout, Failure Tolerance

I. INTRODUCTION

Any storage system stores data in fallible devices. Currently,
these are mainly magnetic disk drives or flash memory, and
in the near future, phase change memories. To protect against
device failures and other types of data unavailability, data is
stored redundantly. Since replicating data is expensive, many
systems use erasure coding that adds parity data to a group
of user data and that allows us to calculate some inaccessible
parts of user data from the remaining user data and the parity
data. We could arrange all devices with user data in a single
reliability stripe and then add k parity devices in order to
achieve tolerance against k failures, but since parity data needs
to be updated with every change of user data in the stripe, such
an arrangement would easily overwhelm the parity devices
with updates. Additionally, in case of failure, reconstructing
inaccessible data requires reading the same number of devices
as there were those containing user data, which would be all

of them in this scenario. The length of the reliability stripes
are therefore chosen much smaller than the number of devices
in the ensemble. The RAID Level 6 organization for instance
arranges data in stripes each consisting of n user data devices
and an additional two parity devices.

The hazard rate a.k.a. the failure rate (the probability to
not survive the next time period) for many types of devices,
including disk drives and flash, changes over their lifetime.
We present here data layouts that adjust their level of erasure
protection to these failure rates. The total number of storage
devices does not change, which allows adjustment in prepack-
aged storage such as a large disk array or flash array with a
fixed number of slots. This is easy to do if one chooses some
form of RAID Level 6 design. We present here an organization
that is based on a more resilient flat XOR layout.

Write cycles in Flash drives degrade their reliability. The
resulting high error rate is controlled with Error Correcting
Codes (ECC) that add parity data to each Flash page. Errors
not controlled in this manner result in lost data. Meza and
colleagues discern distinct rates of SSD failures during distinct
periods of their useful life. Apparently, quite a number of
devices fail early, and those that do not fail early, fail only
towards the end of their useful life. [13].

The emergence of very large data centers with associated
storage systems has allowed several studies on the failure
behavior of disk drives. One result is that disks in these large
installations fail at higher rates than the data sheet specifica-
tions suggest. For maybe 50% of batches, disk failure rates
follow a bathtub curve – high failure rates at the beginning
(burn-in phase) and the end of the economic lifespan (wear-
out) and a lower rate in between [2], [18], [19], [20].

A recent study by Beach showed that individual disk
batches can evidence much higher failure rates than usual,
even considering that disk failure rates in data centers already
tend to be higher than the specification sheets suggest. Beach
reports a batch of 1163 Seagate Barracuda 7200.14 disks that
failed at a rate of 43% per year in 2014, whereas other disks
from the same manufacturer perform much better. Beach’s
observation are taken from Backblaze that buys the cheapest
disks available and stores them in bundles of 45 in a Backblaze
Storage Pod [3], [11]. The statistical significance of the
Backblaze data can be doubted, but even if they are incapable
of measuring the robustness of a specific drive family, they
make the point that disk drive reliability differs unpredictably
between batches and different time periods.

Data centers sometimes literally expand by adding a con-

P0,1 P0,2

D1,7 P1,1

D0,0 D0,1 D0,2 D0,3 D0,4 D0,5 D0,6 D0,7

D1,0 D1,1 D1,2 D1,3 D1,4 D1,5 D1,6P1,2

D2,0 D2,1 D2,2 D2,3 D2,4 D2,5 D2,6

D3,0 D3,1 D3,2 D3,3 D3,4 D3,6P3,2

D2,7

D3,7 P3,1

P2,2P2,1

D3,5

D4,0 D4,1 D4,2 D4,3 D4,4 D4,5D4,6

D5,0 D5,1 D5,2 D5,3 D5,4D5,6 P5,2

D4,7

D5,7 P5,1

P4,2P4,1

D5,5

D6,0 D6,1 D6,2 D6,3D6,4 D6,6 P6,2D6,7 P6,1D6,5

D7,0 D7.1 D7,2D7,3 D7,4 D7,6 P7,2D7,7 P7,1D7,5

D8,6

D9,5

D10,4

D11,3

D12,2

D13,1

D14,0

D8,5

D9,4

D10,3

D11,2

D12,1

D13,0

P14,2

D8,4

D9,3

D10,2

D11,1

D12,0

P13,2

P14,1

D8,3

D9,2

D10,1

D11,0

P12,2

P13,1

D14,7

D8,2

D9,1

D10,0

P11,2

P12,1

D13,7

D14,6

D8,7

D9,6

D10,5

D11,4

D12,3

D13,2

D14,1

P8,1

D9,7

D10,6

D11,5

D12,4

D13,3

D14,2

P8,2

P9,1

D10,7

D11,6

D12,5

D13,4

D14,3

D8,1

P9,2

P10,1

D11,7

D12,6

D13,5

D14,4

D8,2

D9,0

P10,2

P11,1

D12,7

D13,6

D14,5

D15,0P15,2P15,1D15,7D15,6 D15,1 D15,2 D15,3 D15,4D15,5

Fig. 1. A RAID 6 adjustable reliability stripe.

tainer with hardware to it. An organization usually does not
buy containers and disks independently but rather an ensemble
of enclosures and disks. If flash memory is used, then the
diverse chips will also be packaged in an enclosure. Unless we
are willing to organize reliability stripes across enclosures and
disk arrays, we need to organize reliability with a fixed number
of components. This is easy to do if we use RAID Level 6.
Of course, very large disk farms do exactly that: they organize
reliability across several racks and even storage facilities. The
data is organized using sophisticated erasure correcting codes
such as Local Reconstruction Codes [7], [28] or Partial MDS
Codes [4], [5] in a manner that allows data reconstruction
usually involving only disks from the same rack but that are
still capable of dealing with larger failures using disks in other
racks or even remote data centers.

These sophisticated layouts use individual disks as the
management unit. I propose instead to use storage pods with
even a few hundred disks as the unit of management. Each
storage pod consists of a set of data and parity disks together
with a few spare disks and is managed on an individual level.
To obtain security against common cause failure (ranging
from catastrophe to seemingly trivial causes such as a loose
enclosure that allows vibration from one bad disk to affect
others in the same enclosure) as well as temporary data
unavailability such as one caused by a network problem at
a data center, we can arrange the storage pods in reliability
stripes as well, using a simple parity code, a linear MDS code,
or a more sophisticated partial MDS code. The storage pods
appear as highly reliable and very large storage units. They
are responsible for trading capacity for reliability in case that
the underlying disks are less reliable than expected or in order
to combat infant mortality.

Since our construction applies to devices made of Flash
drives or Phase Change Memories as well as disk drives, we
call our organizations storage arrays. We are proposing and
evaluating the internal organization of storage arrays and their
individual reliability, not how they are used in large scale
distributed storage systems. A smaller organization might for

legal reasons prefer to satisfy its data needs with a single array.
A PCM storage manufacturer might decide to use the layout
proposed here for a single very high capacity storage solution
that gracefully react to the aging of devices by lowering its
storage capacity.

Such a storage array (or pod) stores data internally using
a number of storage devices such as disks or flash chips
and protects again device failure in the usual manner by
creating redundant parity data. It therefore organizes the set
of devices in several reliability stripes. Each stripe contains
a fixed number n of disks (or flash chips). Data is stored in
groups of n buckets (or disklets), one on each physical disk.
Each group consists of n−k data buckets and k parity buckets.
We simply adjust the resilience of a stripe and thereby the
reliability of the storage array by rededicating one bucket from
a data bucket to a parity bucket or vice versa. Figure 1 gives
a simple example for a RAID 6 reliability stripe consisting
of 10 disks or flash chips. In the two-failure tolerant layout,
the stripe stores data in buckets Di, j and parity in buckets
Pi, j. If a higher resilience is needed, then the data buckets
Di, 7 becomes a parity bucket. The contents of the first parity
bucket Pi, 1 in each stripe i is calculated using the exclusive-
or operation, but the parity in the other parity buckets is
calculated in a more involved way by using a linear erasure
correcting code. Switching from two-failure tolerance to three-
failure tolerance or back is an involved procedure. In the first
case, data needs to be moved from the reassigned (violet) data
buckets as the array is loosing capacity and the parity data
needs to be recalculated. In the latter case, the parity bucket
is conceptually emptied. But when data is written to these
violet buckets, then the corresponding parity blocks (depicted
in red) have to be rewritten with recalculated parity data.
However, as we only envision one or maybe two changes of
failure tolerance over the life-span of the array, the cost of the
procedure is amortized to almost nothing over the economic
life-span of the storage array.

Instead of using the RAID 6 architecture, we propose to
use layouts based on Flat XOR-codes [6] because of their
greater robustness than those based on RAID Level 6. The flat
layouts also do away with the need for Galois field calculation
and the need for power-hungry, sophisticated processors that
can encode and decode general linear erasure correcting codes
at access speeds [17]. These flat layouts have the same
parameters as a corresponding RAID Level 6 layout, that is,
they have the same storage overhead, the same amount of
reconstruction traffic after a failure, and the same number
of parity updates. Their biggest drawback is that they only
exists for certain configurations (Table I below). Because each
storage device belongs to two otherwise disjoint reliability
stripes, reconstructing the contents of a failed device can
be done in two different ways, implying greater flexibility
in the handling of reconstruction traffic. To deal with the
phenomenon of unexpectedly high failure rates, we proposed
earlier “hardening” a disk array by adding additional parity
disks on demand [16]. Here, we propose to achieve harden-
ing by merely reconfiguring the data layout. Reconfiguration

D1 D2 D3 A

D4 D5 D6 B

D7 D8 D9 C

D E F

A

B

C

D

E

F

D1

D2D3
D4

D5
D6

D7 D8

D9

Fig. 2. Left: The two-dimensional layout for a storage array. D1, D2, . . ., D9

are data devices and A, B, . . ., F parity devices. Right: The corresponding
graph visualization.

instead of hardening is called for when storage needs are
provided by ensembles with a fixed number of devices.

In the rest of this paper, we describe these layouts, calculate
their reliability, and then compare with the reliability of RAID
based layouts. In the final section, we point out that there are
still other flat layouts that can be used for more reliable, but
still adaptable layouts.

II. LAYOUTS

Our storage arrays are laid out using flat XOR-codes [6].
This means that all devices are either parity or data devices
and are organized into reliability stripes that consist of k
data and one additional parity device. A two-failure tolerant
layout places each device into (at least) two different reliability
stripes. Reversely, if each data device is placed in two different
reliability stripes, then the layout is two failure tolerant if
reliability stripes are either disjoint or intersect in exactly one
data disk [16], [23].

A. A Graph Representation

This frequently made observation implies that each data
device is uniquely characterized by the two reliability stripes
in which it is located. This allows us to represent a layout as
a graph. The vertices of this graph are the reliability stripes
and the edges of the graph are the data devices. Since each
reliability stripe contains exactly one parity device, we can
identify the vertices with parity devices as well. To our best
knowledge, this representation of flat XOR-codes with two-
failure tolerance as a graph was first used by Xu and colleagues
in the definition of B-codes [27].

Figure 2 shows on the left a typical two-dimensional layout
consisting of the nine data disks D1, D2, . . ., D9 and six parity
disks A, B, . . . , F . The dotted lines indicate the reliability
stripes. Thus, the contents of B are the exclusive-or of the
data disks D4, D5, and D6. On the right, Figure 2 shows the
corresponding graph. For example, the edge labeled D8 on the
right of Figure 2 connects vertices C and E and corresponds
therefore to data disk D8 on the left of the Figure located in
the third row (with C) and second column (with E). As we
can see, each data disk is determined by a pair of parity disks
but not every pair of parity disks has an associated data disk.

A

E C

D

F B

4

8

1113

14

0 3

10

1 2

5

6

7

9

12

Fig. 3. The complete graph K6.

We present a different example in Figure 3, where we
start with the complete graph with six vertices. The colors
of the edges are from the Lawless factorization that we will
use below. The data devices correspond to the edges and the
parity devices to the vertices. We can therefore read off the six
reliability stripes. We present them as lines starting with the
parity device and followed by the user data carrying devices
in the left-to-right order of the edges at the vertex:

A 0 1 2 3 4
B 4 5 6 7 8
C 8 3 9 10 11
D 11 7 2 12 13
E 13 10 6 1 14
F 14 12 9 5 0

The construction guarantees that all data disks belong to
exactly two reliability stripes and that each reliability stripe
contains exactly five data devices. Two failure tolerance is also
a consequence of the construction, but that is not as obvious.
We can argue by case distinctions. If the two failed devices
are parity, then their contents can be reconstructed from the
user data that has survived in its entirety. If one is a parity and
the other one a data device, then we can reconstruct the data
in data device from one of the two reliability stripes in which
the data device is located. Finally, if both are data devices,
then they can only be in the same reliability stripe once and
we can use the respective other stripe to reconstruct the data
on the lost two devices.

B. Amended Layouts

Disk reliability can be much lower than advertised. Many,
but far from all disk families investigated show high infant
mortality. Layouts whose data survive three simultaneous
failures are therefore desirable. In previous work [23] we
advocated using a complete graph to define a two-failure
tolerant layout and then divide the data disks into additional
reliability stripes, also with k data disks. In the graph, the
additional reliability stripe are an edge factoring in the sense
of graph theory. We are using Lawless’ construction of such
a factoring from 1974 that results in triple-failure tolerant
layouts [12].

Fig. 4. Lawless factorizations of the complete graph for K8 (left) and K10

(right).

Lawless designed the factorization in the context of design
theory, and in particular, in order to give a “handcuffed
design”, a generalization of Kirkman’s famous schoolgirl
problem from 1847 that stands at the beginning of the theory
of Combinatorial Designs [10]. A factor in the construction is
a path that starts at one vertex, then moves to the vertex to
the right, then two to the left, then three to the right, etc. and
creating a zig-zag pattern. This factorization only exists if the
number of vertices is even. The number of factors is half the
number of vertices and the length of the factor is one less than
the number of vertices. We give factorizations of K8 and K10

in Figure 4, where factors are colored with the same color.
To change the resilience of a layout from two-failure tol-

erance to three-failure tolerance, we add n additional parity
disks and create a new reliability stripe by grouping all data
disks corresponding to edges in the same factor together with
one of the parity disks. We called this the “amended layout”.
It is the basis for the current work.

C. Punctured Layouts

Adding and removing parity devices from an ensemble is
possible, but not convenient. We present now a flat layout
that switches from two-failure to three-failure tolerance and
back without adding or removing devices. We start with an
amended layout by coloring the edges of a complete graph
K2d with the design by Lawless. The edges colored with a
given color form a path starting at a node i and then moving
to nodes i + 1 (mod 2d), i − 2 (mod 2d), i + 3 (mod 2d),
i − 4 (mod 2d), . . ., Figure 5. Since all vertices are visited
and since the number of vertices is even, the number of edges
in the path is odd. Therefore, there is a middle edge in the
path, the dth one, which goes from i − d + 1 (mod 2d) to
i + d (mod 2d) if d is odd and which goes from i + d − 1
(mod 2d) to i − d (mod 2d) if d is even. If we arrange the
nodes in a cycle in ascending or descending order, then these
edges are the ones that pass through the center of the cycle.

The two-failure tolerant layout is just defined by K2d and
disregards the colors. Thus, there are 2d reliability stripes,
each with 2d−1 data disks and – of course – one parity disk.
To switch to the three-failure tolerant layout, we convert the
data disks corresponding to the middle edges in the Lawless
paths, indicated by dotted lines in Figure 5 to parity disks.

TABLE I
DIMENSIONS OF PUNCTURED LAYOUTS. ON THE LEFT, WE GIVE THE

NUMBERS FOR THE TWO-FAILURE TOLERANT AND ON THE RIGHT FOR
THE THREE-FAILURE TOLERANT LAYOUT.

d # Data # Parity # Total Disks Stripe Sizes
3 15/12 6/9 21 5/4
4 28/24 8/12 36 7/6
5 45/40 10/15 55 9/8
6 66/60 12/18 78 11/10
7 91/84 14/21 105 13/12
8 120/112 16/24 136 15/14
9 153/144 18/27 171 17/16

10 190/180 20/30 210 19/18
11 231/220 22/33 253 21/20

We then create d additional parity stripes from the data disks
colored by the same color in the Lawless coloring. Of course
the middle edges in each path are no longer available as data
disks, since they are now parity disks. The design now has
3d reliability stripes, each with 2d− 2 data disks and a parity
disk.

We still need to show that the new design is three failure
tolerant. Therefore assume that three devices have failed. If
one or more of the failed devices is one of the d converted
parity devices, then we really have at most a two-device
failure in the non-amended layout, and we know that we
can recover from that. The remaining case is that of three
devices in the non-amended layout. There are exactly two
failure patterns. The first one consists of a data device and
the two parity devices belonging to the same reliability stripe
as the data device. In this case, we can reconstruct the data
on the data disk using the new reliability stripe containing the
data device and write it to a spare disk. The second failure
pattern consists of three failed data devices such that each
pair of two of the three failed devices share a reliability stripe.
These corresponds to three edges that form a triangle in the
graph. The edges colored with the same color form a path and
cannot therefore contain a triangle. This means that the edges
in a triangle have two or three different colors. Therefore at
least one of the edges has a different color than the other two
in the triangle and since these are the only failed devices, we
can use the new reliability stripe corresponding to its color to
reconstruct the data on a spare drive. Now there are only two
failures and we can deal with them using the old reliability
stripes. This concludes the proof that the new layout provides
three-failure tolerance.

Switching between two- and three-failure tolerance without
introducing additional disks into the ensemble restricts the
dimension of any disk array. However, the dimensions of our
layouts cover a quite reasonable range, as can be seen from
Table I.

III. RELIABILITY CALCULATION

Attempts to count patterns of failed devices for our 2-failure
and 3-failure tolerant flat XOR layouts quickly run into too
many inclusions and exclusions and become very difficult to
calculate. Instead, we used simulation. In batches of 100,000

0

4 2

3

15

3

2

1
0

4

7

6

5

0

6

37

8

9 1

2

4
5

Fig. 5. Punctured layout of K6, K8, and K10.

�

�

�

�

�

�

��

��

� �� �� ��
����

���

���

���

���

���

����� ��

FT 2

�

�

�

�

�

�

��

��

� �� �� �� �� ��
����

���

���

���

���

���

����� ��

FT 3

Fig. 6. Survival Rates of two-failure (top) and three-failure (bottom) tolerant
layouts. The x-axis gives the number of failed devices, the y-axis the
probability that the layout has not lost data.

or 1,000,000 runs, each run simulates the failure of f storage
components in one of our layouts. For each batch, we count
the number c of times per batch where we would not have been
able to recover all data. We did this for at least 200 batches.
We could assume that the value c is normally distributed.
Statistical tests revealed this to be indeed the case with the
exception of very small f for large layouts. Nevertheless, we
assumed the Student’s t distribution for c for the calculation of
99% confidence intervals. The average value of c divided by
the number of runs in a batch estimates the robustness – the
probability that a system with f failed devices has lost data.

�

�

�

�

�

�

��

��

� �� �� ��
% ����

���

���

���

���

���

����� ��

FT 2

�

�

�

�

�

�

��

��

� �� �� �� �� ��
% ����

���

���

���

���

���

����� ��

FT 3

Fig. 7. Relative survival Rates of two-failure (top) and three-failure (bottom)
tolerant layouts. The x-axis gives the percentage of failed devices, the y-axis
the probability that the layout has not lost data.

By adding batches if necessary the radius of the confidence
intervals was made to be less than 1/10000. We judged this
precision to be necessary for trustworthiness as we calculate
the data survival rate during five years for each layout.

We display the results of our robustness determining sim-
ulations in Figures 6 and 7. There are no error bars because
we made the confidence intervals so small. The x-axis gives
the number of failed devices in Figure 6 and the percentage
of failed devices in Figure 7. The curves are labeled with the
d-value in Table 1, which is half the number of vertices. The
y-axis gives the probability of data survival. The typical S-

curves in Figure 6 show that data survival probability increases
with increased size, whereas the ones in Figure 7 show
the reversed order. This is not surprising since the size of
the reliability stripes increases with the degree. The relative
increase in robustness between the two-failure and the three-
failure tolerant layouts are quite apparent.

We then used a standard continuous Markov model to
calculate survival probability of a system after four and five
years. We did not assume declustering. This means that all
storage components are assigned a fixed role, either as data or
as parity.

A. Markov Model
In order to avoid a plethora of states, our Markov models

have one state for each number of failed devices in the
ensemble. In addition, we have the failure state. We consider
every dataloss catastrophic, so that we made the failure state
self-absorbing.

There are two types of state transitions in our models, those
modeling repair and those modeling failure. The rate of failure
transitions is given by nλ where λ is the failure rate and n is
the number of currently functioning devices in the ensemble.
We determine the destination of the transition – either to the
next state or to the failure state – based on the previously
determined robustness. We now derive these values.

Let Ai stand for the event that the ensemble has not lost
data in the presence of exactly i failures and let Fi = 1−Ai
stand for the opposite event that the device has suffered data
loss in the presence of exactly i failures. The robustness is the
probability P (Ai). Clearly, for all i ∈ N

Ai ⊃ Ai+1

and
Fi ⊂ Fi+1,

as additional failure cannot restore an ensemble with dataloss
to one without. Also, P (A0) = 1 and P (Fi) = 0 for
large enough i. The rate at which a failure transition from
State i leads to the absorbing failure state is the conditional
probability of dataloss in State i + 1 given that there was no
dataloss in State i and is

P (Fi+1|Ai) =
P (Fi+1 ∩Ai)

P (Ai)

=
P (Fi+1)− P (Fi)

1− P (Fi)
.

Correspondingly, if the total number of devices in the ensem-
ble is denoted by N , then the transition from State i to State
i+ 1 is taken at a rate of

τi,i+1 = (1− P (Fi+1)− P (Fi)
1− P (Fi)

)(N − i)λ

and from State i to the absorbing failure state at a rate of

τi,f =
P (Fi+1)− P (Fi)

1− P (Fi)
(N − i)λ.

There are repair transitions from State i to State i − 1 taken
at a rate of iρ.

B. Implementation of Survival Rate Calculation

We used the Euler method to update the stay probabilities of
the states every second. Discretizing updates is one source of
numerical error, the other one is rounding error. We used the
Apfloat (arbitrary precision) Java library experimenting with
various degrees of precision until settling on one where there
were no longer changes in the results.

C. Results

We display the results of our calculations in Figure 8. The
x-axis gives the mean time to failure of the disks in hours,
whereas the y-axis gives the number of nines in the survival
probability after 5 or 6 years, respectively. The number of
nines is defined as − log1 0(1− ps) for a survival probability
of ps. For example, the number of nines of ps = 0.999 is 3
and of ps = 0.9995 is 3.30103.

For a given mean time to failure of the disks, the survival
rate of the three-failure tolerant ensemble is better by about
four nines. More importantly, if disks fail at a much higher
rate, then the three-failure tolerant layout has an equivalent rate
of survival than the two-failure tolerant layout. In the graphs,
the difference between x-axis values for the same survival level
is more important.

IV. COMPARISON WITH RAID LEVELS 6 AND 6+1

We compare with RAID levels 6 and 6+1 in order to put our
reliability numbers in context. A RAID level 6 is organized
as n reliability stripes, each of which contains m data devices
and an additional two parity devices. The first parity device
contains the exclusive-or parity of the m data devices, whereas
the contents of the second one are calculated via Galois field
arithmetic. Using the Packed Shuffle Bytes (PSHUFB) in-
struction in the INTEL architecture’s Supplemental Streaming
SIMD Extensions 3 or its equivalent on other processors,
Plank, Greenan, and Miller showed how this so-called Q-parity
can be calculated at speeds faster than the speed of streaming
data from a disk [17]. The drawback is of course the need
for sophisticated, but power-hungry processors. For lack of a
better name, we call RAID level 6+1 a similar design with
m data disks and three parity disks per reliability stripe. By
flipping one of the data disks to a parity disk, we change
a level 6 RAID to a level 6+1 RAID and vice versa. For
the convenience of the reader, we show the definition of the
parameters in Figure 9.

It is normal to divide the blocks of a disk in a RAID level
6 or 6+1 into regions and cyclically change the assignments
of each disk to the role of data or parity disk so that each disk
contains the same number of blocks that serve as data blocks
or parity blocks. This strategy equalizes read and write loads.
It however has no influence on the reliability of the ensemble.

This is not true if we use declustering, where the assignment
of a region in a disk also varies the reliability stripes. Declus-
tering equalizes the reconstruction load over the remaining
disks after one or more disk failures.

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

������ ������� �������
���� ����

�

�

�

�

��

��

��
����� ��������

Degree 4

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

������ ������� �������
���� ����

�

�

�

�

��

��

��
����� ��������

Degree 5

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

������ ������� �������
���� ����

�

�

�

�

��

��

��
����� ��������

Degree 6

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

������ ������� �������
���� ����

�

�

�

�

��

��

��
����� ��������

Degree 7

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

������ ������� �������
���� ����

�

�

�

�

��

��

��
����� ��������

Degree 8

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

������ ������� �������
���� ����

�

�

�

�

��

��

��
����� ��������

Degree 9

� ����� ���� � �����

� ����� ���� � �����

� ����� ���� � �����

� ����� ���� � �����

������ ������� �������
���� ����

�

�

�

�

��

��

��
����� ��������

Degree 10

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

������ ������� �������
���� ����

�

�

�

�

��

��

��
����� ��������

Degree 11

Fig. 8. Five and six year survival rate in number of nines in dependence on the disk mean time to failure (in hours) for layouts of degree 4, 5, 6, 7, 8, 9,
10, and 11.

A. Layout Equivalencies

The punctured layout of degree k has 2k parity disks
and k(2k − 1) data disks in the two-failure tolerant version.
These numbers are exactly the ones for a RAID Level 6
with k reliability stripes each consisting of 2k − 1 data disks
and 2 parity disks. The three-failure tolerant version of the
punctured layout has 3k parity disks and k(2k−2) data disks,
corresponding to a RAID Level 6+1 layout with k reliability
stripes, each consisting of 2k−2 data disks and 3 parity disks.
This allows us direct comparisons between the two types of

disk arrays.
In one point of comparison, flexibility, the RAID organiza-

tion is a clear winner. There are configurations for any number
of stripes and any number of data disks per stripe. As we will
now see, the flat layouts offer considerably higher reliability.

B. RAID 6 and 6+1 Survivability Formulae

We now derive formulae for the survival of the data in a
RAID level 6 organization after f failures. A failure pattern
of f failed devices does not lead to dataloss and constitutes
therefore a “good” pattern, if there is no stripe with more

n reliability
stripes

m + 2 data disks

Fig. 9. Definition of parameters for a RAID Level 6 layout, where one data
disk can be changed into an additional parity disk for a RAID Level 6+1
layout.

than two failed devices. We call the number of stripes with
one failed device κ1 and the number of stripes with two failed
devices κ2. Since the number of failed devices adds up to f ,
we have

κ1 + 2κ2 = f ⇒ κ1 = f − 2κ2.

In addition, we know that κ1 ≥ 0, κ2 ≥ 0, κ1 ≤ n, and
κ2 ≤ n. Under those conditions, we know that the number of
good failure patterns with these parameters is

n6good(n,m, κ1, κ2) =
(
n
κ1

)(
n−κ1

κ2

)(
m+2
1

)κ1
(
m+2
2

)κ2
,

otherwise it is 0. The total number of good patterns is obtained
by summing over the various possibilities for κ2, yielding

g6(n,m, f) =

bf/2c∑
κ2=0

n6good(n,m, f − κ2, κ2).

While not exactly closed form, this equation can be evaluated
precisely by using fractions of arbitrarily large integers with
a tool like Mathematica. The same is true for the RAID level
6+1, though the formula and its evaluation are more involved.
A failure pattern for RAID level 6+1 has lead to dataloss if
one of the stripes contains more than three failed devices. If
we denote the number of stripes with one, with two, and with
three failed devices respectively with κ1, κ2, and κ3, then the
number of patterns with these characteristics are

n7good(n,m, κ1, κ2, κ3)

=
(

n
κ1,κ2,κ3,n−κ1−κ2−κ3

)(
m+3
1

)κ1
(
m+3
2

)κ2
(
m+3
3

)κ3

and zero otherwise. The total number of good patterns is again
obtained by summing up over the various possibilities∑

κ1+2κ2+3κ3=f ;κ1≥0;κ2≥0;κ3≥0;

n7good(n,m, κ1, κ2, κ3)

C. Robustness Comparison

We compare the resulting robustness in Figure 10. The black
graphs are for the two-failure tolerant layouts and the red ones
for the three-failure tolerant ones. The solid graphs give the
robustness for the RAID layouts and the dotted ones for the
punctured layouts. Both sets of graphs with the same failure
tolerance start out and finish together; this is because the
have the same number of failures they can tolerate for sure

and equally naturally, both fail for sure when the number of
failures exceeds the number of parity disks. However, if the
number of failed devices is between these two extremes, the
robustness, the probability that data survives in the presence
of that number of failed devices, differs considerably. We
also observe that as the degree and therefore the size of
the ensemble increases, the punctured layout with two failure
tolerance has closer robustness to that of the RAID layout
with three failure tolerance. All together, these results show
the positive effect of entanglement quite impressively.

D. RAID 6 and 6+1 Survival Rates

We again used the Euler Method to solve a Markov model to
determine the survival rates in number of nines for the RAID
6 and RAID 6+1 layouts. The results are shown in Figure 11.
As was the case for the punctured layouts, the extension of the
economic lifespan of a disk ensemble by a year has much less
of an impact then an increase in the reliability of the disks.

E. Comparison between RAID and Punctured Layouts

In Figure 12, we give the comparison between RAID 6
and RAID 6+1 on the one hand and the punctured layouts
on the other hand of the survival probability after six years
(in number of nines). The punctured layout is more reliable.
The difference grows with the larger layouts, which is only
natural.

V. ADJUSTING TO ARBITRARY DEVICE NUMBERS

The total number of devices in a storage system arranged
according to a punctured layout is a multiple of a large number.
For d = 8, we obtain a 2 to 15 ratio of parity over data devices,
but the device number needs to be 136 or a multiple thereof.
This is however only necessary if we assign complete devices
to the single function of either carrying user data or parity
data.

Declustering distributes the role of parity and data devices
so that each single device has about the same number of parity
data and user data and therefore that the write-loads resulting
from “small writes” (small changes in situ that affect only a
single data block) tend to be more equal. It also allows us
to use any number of devices for a certain layout as long
as it is at least as large as the total number of devices from
Table I. A very simple scheme uses the “left rotate” layout
such as the one depicted in Figure 13. The vertical rectangles
present 10 storage devices. Just as for RAID Level 6 (see
Figure 1), they are broken up into disklets, depicted as the
colored squares. Assume that we have a layout for 7 devices.
We then organize the first disklets on the first seven devices
according to the layout. We then organize the next set of seven
disklets, three on the remaining three devices and four in the
previous set of devices, again using the layout. The belonging
to a certain seven-device layout is represented in Figure 13
through different colors. The different roles of a block (user
data versus parity data) is indicated by the absence of presence
of linear grading of each block. We can see that even though
the numbers do not fit well, the left-rotate organizations uses

���� �

���� �

���� �+�

���� �

� � �� �� ��
�������

���

���

���

���

���
��� ����

Comparison Degree 4

���� �

���� �

���� �+�

���� �

� � �� �� ��
�������

���

���

���

���

���
��� ����

Comparison Degree 5

���� �

���� �

���� �+�

���� �

� � �� �� ��
�������

���

���

���

���

���
��� ����

Comparison Degree 6

���� �

���� �

���� �+�

���� �

� � �� �� �� �� ��
�������

���

���

���

���

���
��� ����

Comparison Degree 7

���� �

���� �

���� �+�

���� �

� � �� �� �� �� ��
�������

���

���

���

���

���
��� ����

Comparison Degree 8

���� �

���� �

���� �+�

���� �

� � �� �� �� �� ��
�������

���

���

���

���

���
��� ����

Comparison Degree 9

���� �

���� �

���� �+�

���� �

� � �� �� �� �� ��
�������

���

���

���

���

���
��� ����

Comparison Degree 10

���� �

���� �

���� �+�

���� �

� � �� �� �� �� ��
�������

���

���

���

���

���
��� ����

Comparison Degree 11

Fig. 10. Robustness comparisons for degrees 4 - 11 for the punctured and the RAID layouts with two and three failure tolerance.

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

������ ������� �������
���� ����

�

�

�

�

��

��

��
����� ��������

Degree 4

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

������ ������� �������
���� ����

�

�

�

�

��

��

��
����� ��������

Degree 5

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

������ ������� �������
���� ����

�

�

�

�

��

��

��
����� ��������

Degree 6

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

������ ������� �������
���� ����

�

�

�

�

��

��
����� ��������

Degree 7

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

������ ������� �������
���� ����

�

�

�

�

��

��
����� ��������

Degree 8

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

������ ������� �������
���� ����

�

�

�

�

��

��
����� ��������

Degree 9

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

������ ������� �������
���� ����

�

�

�

�

��

��
����� ��������

Degree 10

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

� ��� ���� � ����

������ ������� �������
���� ����

�

�

�

�

��

��
����� ��������

Degree 11

Fig. 11. Five and six year survival rate in number of nines in dependence on the disk mean time to failure (in hours) for layouts RAID 6 and RAID 6+1
corresponding degree 4, 5, 6, 7, 8, 9, 10, and 11.

up almost all of the available space and almost evens out the
number of parity data carrying disklets on each device.

This particular layout is actually far from optimal. For
example, if the first and the second device dies, then the third
device’s disklets are used for recovery six times, whereas the
fifth device’s disklets are only used four times. Finding better
organizations is a combinatorial problem that needs to be left
to future research.

At first glance, it seems that declustering does away with
the reliability advantage of punctured layouts compared with

an equally declustered RAID Level 6 organization, since all
failures of three disks seem to imply data-loss. Indeed, if
we use a random declustering organization with a very large
number of disklets per device, then this is asymptotically the
case. However, we can achieve good declustering with very
moderate numbers of disklets per device, and in this case, the
differences in survival rates are still present though not quite
as marked.

Recently, a theoretical study by Iliadis extended a previous
study on the reliability of erasure coded storage systems [25],

��� �����

��� ����

��� �����

� �� ����

������ ������� �������
���� ����

�

�

�

�

��

��

��
����� ��������

Degree 4

��� �����

��� ����

��� �����

� �� ����

������ ������� �������
���� ����

�

�

�

�

��

��

��
����� ��������

Degree 5

��� �����

��� ����

��� �����

� �� ����

������ ������� �������
���� ����

�

�

�

�

��

��

��
����� ��������

Degree 6

��� �����

��� ����

��� �����

� �� ����

������ ������� �������
���� ����

�

�

�

�

��

��

����� ��������

Degree 7

��� �����

��� ����

��� �����

� �� ����

������ ������� �������
���� ����

�

�

�

�

��

��

����� ��������

Degree 8

��� �����

��� ����

��� �����

� �� ����

������ ������� �������
���� ����

�

�

�

�

��

��

����� ��������

Degree 9

��� �����

��� ����

��� �����

� �� ����

������ ������� �������
���� ����

�

�

�

�

��

��

����� ��������

Degree 10

��� �����

��� ����

��� �����

� �� ����

������ ������� �������
���� ����

�

�

�

�

��

��

����� ��������

Degree 11

Fig. 12. Comparison of the six year survival rates (in number of nines) of analogue punctured and RAID layouts.

[9]. This study confirms the broad lines of behavior that
were known since the seminal papers by Muntz [14] and
Holland and Gibson [8] and the early works by various authors
[1], [21], [22], [24], [26]. The load at individual devices is
roughly inversely proportional to the number of devices over
which we decluster and thus inversely linearly reduces the
“window of vulnerability” during which additional failure can
lead to dataloss. To our best knowledge, no published work
discusses the fast, reliable detection of device failures (though
presumably heart beat monitoring can achieve this), and how
even the reconstruction load at individual devices is. The latter

is not an issue when parity stripes are declustering over all
disks in a large data center, since it is unlikely then that any
device would have to be read more than once, but it becomes
an issue in our situation. It should be noted that one potential
benefit of flat layouts is that each failure can be repaired using
two independent reliability stripes.

Whatever the underlying technology (disk drives, Flash
memory, or newer memories such as PCM), our “super-
storage” devices will have to contain spare components and
will have to do some moderate amount of declustering.

Fig. 13. Left rotate layout for declustering

VI. FUTURE WORK

The punctured layouts are not the only layouts possible.
In Figure 14, we show a two-dimensional layout. It consists
of n × n data disks arranged in a two-dimensional grid, to
which for each column and row parity disks for a total of 2n
are added. In the three-failure-tolerant layout, the data disks
in the main diagonal are made into parity disks. Each row
and column of data disks forms a reliability stripe. The new
reliability stripes are formed by minor diagonals. In this layout,
the assignment of disks to stripes is somewhat arbitrary. The
right lower corner of Figure 14 shows that in this layout, some
reliability stripes have an intersection of more than two, as the
two disks in new stripe 1 are located in the same column. The
only failure pattern of three disks in the square layout consists
of a data disk together with the parity disk in the row and with
the parity disk in the column. Since such a data disk is in one
diagonal there is enough information in the system to make
the three-failure-tolerant layout in fact three-failure tolerant.

From previous work [15] we know that designs based on
complete graphs are somewhat less reliable than two- or
three-failure tolerant square layouts which are exactly those
based on complete bi-partite graphs. However, the former are
considerably smaller than the latter, which makes them more
attractive for flexible storage system layouts.

It is obvious that there is much potential research to be done
evaluating different types of layouts.

Another issue for more research is that of declustering. With
declustering, a layout for n disks can be used for layouts with
m,m > n disks. In addition, with declustering, the ”window
of vulnerability” after a storage device failure is greatly re-
duced since many reconstruction operations can be performed
in parallel. In a very finely declustered layout, any failure of
t+ 1 disks in a t-failure tolerant layout will lead to dataloss,
because a bad configuration is going to happen in the many
layouts that declustering superimposes on the array. However,
a too finely declustered layout renders meta-data management
complex. It is therefore natural to limit declustering by for
example creating 1000 “disklets” on each hard drive and
assign the disklets on a drive to different configurations. If
this is a case, then many instances of t + 1 and even some
of t + 2 failed devices do not lead to dataloss. Thus, the
robustness of a moderately declustered system is of course

0 1 2 3 4 5 6 7 8 9
0 9 1 2 3 4 5 6 7 8
9 0 8 1 2 3 4 5 6 7
8 9 0 7 1 2 3 4 5 6
7 8 9 0 6 1 2 3 4 5
6 7 8 9 0 5 1 2 3 4
5 6 7 8 9 0 4 1 2 3
4 5 6 7 8 9 0 3 1 2
3 4 5 6 7 8 9 0 2 1
2 3 4 5 6 7 8 9 0 1

Fig. 14. An adjustable square layout.

less than the robustness of a non-declustered layout, but not
quite as extreme as one might think. Finally, in a declustered
layout, repair times are much smaller and the impact of the
distribution of repair time on five-year survival rates should
be higher. Modeling repair times as exponentially distributed
introduces another source of modeling errors into the model.
The lack of scientific activity on accurately modeling repair
times (to my best knowledge) is attributable to the immense
difficulty of making accurate modeling assumptions and of
performing an analysis with them.

VII. CONCLUSIONS

Storage arrays consisting of individual components, whether
flash or disk, need to deal with life-time variations of device
reliabilities. Flash technology becomes more error prone with
each erase cycle. An adjustable layout can sacrifice capacity
for better failure protection when it is needed. Disk drives
often, but not always suffer from infant disk mortality. A
disk-based system can start out in a three-failure-tolerant
configuration and move to a two-tolerant configuration once
trust in the longevity of the hard drives has been established.

Since the punctured layouts presented here only use parity
based on the exclusive-or operation, there is no need for
the sophisticated and power-hungry CPUs that are needed to
encode the linear codes used in RAID 6 and RAID 6+1.

The ease of parity generation in conjunction with the relia-
bility gains should more than outweigh the flexibility of RAID
based designs. We have argued (without proper investigation)
that the lack of flexibility can be overcome using declustering
with large disklet size. Declustering allows a trade-off between
flexibility and the survival rate advantage of the resulting
design.

REFERENCES

[1] ALVAREZ, G., BURKHARD, W., AND CRISTIAN, F. Tolerating multiple
failures in RAID architectures with optimal storage and uniform declus-
tering. In Proceedings of the 24th Annual International Symposium on
Computer Architecture (1997), ACM, pp. 62–72.

[2] BAIRAVASUNDARAM, L. N., GOODSON, G. R., PASUPATHY, S., AND
SCHINDLER, J. An analysis of latent sector errors in disk drives. In
ACM SIGMETRICS Performance Evaluation Review (2007), vol. 35(1),
ACM, pp. 289–300.

[3] BEACH, B. What is the best hard drive?, January 21 2015,
www.backblaze.com/blog/best-hard-drive-q4-2014.

[4] BLAUM, M., HAFNER, J. L., AND HETZLER, S. Partial-MDS codes
and their application to RAID type of architectures. IEEE Transactions
on Information Theory 59, 7 (2013), 4510–4519.

[5] CALIS, G., AND KOYLUOGLU, O. A general construction for PMDS
codes. IEEE Communications Letters 21, 3 (2017), 452–455.

[6] GREENAN, K. M., MILLER, E. L., AND WYLIE, J. J. Reliability of flat
XOR-based erasure codes on heterogeneous devices. In Dependable
Systems and Networks With FTCS and DCC, 2008. DSN 2008. IEEE
International Conference on (2008), IEEE, pp. 147–156.

[7] GURUSWAMI, V., XING, C., AND YUAN, C. How long can optimal
locally repairable codes be? IEEE Transactions on Information Theory
(2019).

[8] HOLLAND, M., AND GIBSON, G. Parity declustering for continuous op-
eration in redundant disk arrays. In Proceedings of the 5th International
Conference on Architectural Support for Programming Languages and
Operating Systems (1992), ACM, pp. 23–35.

[9] ILIADIS, I. Reliability of erasure coded systems under rebuild bandwidth
constraints. In Eleventh International Conference on Communications
Theory, Reliability, and Quality of Service (2018), IARIA, pp. 1–10.

[10] KIRKMAN, T. P. On a problem in combinations. Cambridge and Dublin
Math. J 2 (1847), 191–204.

[11] KLEIN, A. Backblaze hard drive stats for 2018, January 2019,
www.backblaze.com/blog/hard-drive-stats-for-2018.

[12] LAWLESS, J. On the construction of handcuffed designs. Journal of
Combinatorial Theory, Series A 16, 1 (1974), 76–86.

[13] MEZA, J., WU, Q., KUMAR, S., AND MUTLU, O. A large-scale study
of flash memory failures in the field. In ACM SIGMETRICS Performance
Evaluation Review (2015), vol. 43(1), pp. 177–190.

[14] MUNTZ, R., AND LUI, J. Performance Analysis of Disk Arrays Under
Failure. In Proceedings Very Large Data Bases (1990), IEEE, p. 162.

[15] PÂRIS, J.-F., LONG, D. D., AND LITWIN, W. Three-dimensional
redundancy codes for archival storage. In Modeling, Analysis &
Simulation of Computer and Telecommunication Systems (MASCOTS),
2013 IEEE 21st International Symposium on (2013), IEEE, pp. 328–332.

[16] PÂRIS, J.-F., SCHWARZ, T. J., AMER, A., AND LONG, D. Protecting
RAID arrays against unexpectedly high disk failure rates. In Proceed-
ings, 20th IEEE Pacific Rim International Symposium on Dependable
Computing (PRDC) (2014).

[17] PLANK, J. S., GREENAN, K. M., AND MILLER, E. L. Screaming fast
galois field arithmetic using intel simd instructions. In FAST (2013),
pp. 299–306.

[18] SCHROEDER, B., DAMOURAS, S., AND GILL, P. Understanding latent
sector errors and how to protect against them. ACM Transactions on
storage (TOS) 6, 3 (2010), 9.

[19] SCHROEDER, B., AND GIBSON, G. A. Disk failures in the real world:
What does an MTTF of 1,000,000 hours mean to you? In Usenix
Conference on File and Storage Technologies (2007), vol. 7, pp. 1–16.

[20] SCHROEDER, B., AND GIBSON, G. A. Understanding failures in
petascale computers. In Journal of Physics: Conference Series (2007),
vol. 78(1), IOP Publishing, p. 012022.

[21] SCHWABE, E., AND SUTHERLAND, I. Improved parity-declustered
layouts for disk arrays. In Proceedings of the sixth annual ACM
symposium on Parallel Algorithms and Architectures (1994), ACM,
pp. 76–84.

[22] SCHWARZ, T., AND BURKHARD, W. Almost complete address transla-
tion (ACATS) disk array declustering. In Proceedings of SPDP’96: 8th
IEEE Symposium on Parallel and Distributed Processing (1996), IEEE,
pp. 324–331.

[23] SCHWARZ, T., LONG, D. D. E., AND PÂRIS, J. F. Triple failure tolerant
storage systems using only exclusive-or parity calculations. In IEEE
21st Pacific Rim International Symposium on Dependable Computing
(PRDC) (2015), pp. 245–254.

[24] SCHWARZ, T. J., STEINBERG, J., AND BURKHARD, W. A. Permutation
development data layout (pddl). In Proceedings Fifth International
Symposium on High-Performance Computer Architecture (1999), IEEE,
pp. 214–217.

[25] VENKATESAN, V., ILIADIS, I., HU, X.-Y., HAAS, R., AND FRAGOULI,
C. Effect of replica placement on the reliability of large-scale data

storage systems. In 2010 IEEE International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems
(2010), IEEE, pp. 79–88.

[26] XIN, Q., MILLER, E., SCHWARZ, T., LONG, D., BRANDT, S., AND
LITWIN, W. Reliability mechanisms for very large storage systems. In
Proceedings of the 20th IEEE/11th NASA Goddard Conference on Mass
Storage Systems and Technologies (2003), IEEE, pp. 146–156.

[27] XU, L., BOHOSSIAN, V., BRUCK, J., AND WAGNER, D. G. Low-
density MDS codes and factors of complete graphs. Information Theory,
IEEE Transactions on 45, 6 (1999), 1817–1826.

[28] XU, Q., XI, W., YONG, K. L., AND JIN, C. Concurrent regeneration
code with local reconstruction in distributed storage systems. In
Advanced Multimedia and Ubiquitous Engineering. Springer, 2016,
pp. 415–422.

