IEEE Xplore Full-Text PDF:

400 2007 39" North American Power Symposium (NAPS 2007)

their database model and in consequence send a new network
data to SESC on average every week or so. Using the
conventional ONLINE-STANDBY architecture for the SESC
is not feasible. A single node based on this configuration is not
very scalable and will result in a single point of failure that we
would like to avoid. In our work we propose a different
approach for the design of a SESC.

V. CLUSTER COMPUTING

In our approach instead of using ONLINE-STANDBY
architecture we propose to use a distributed environment of
many computers connected together. This type of architecture
will provide very good scalability. Should we need to provide
service to more utilities we just need to add more computers to
our network. In addition our architecture will not suffer from
single point of failure. We propose that all SCADA data
coming from the field and all data related to SE solution is
stored in the memory of the distributed computers. This is
essential to provide fast response to requests issued by the
power utilities and is the core of our design.

The proposed architecture is known as Highly Available
Distributed RAM (HADRAM). In our design we harness the
capacity and power of distributed main memory of individual
computers that is highly available and ecasily recovers from
node unavailability. The high level architecture of the SESC is
shown on Figure 2.

HADRAM is made up of a cluster of computers all
connected together at the SECS. The SESC may or may not be
at a single physical site. Every computer node in the system
can be either a server or parity server or both. All the input
data sent to the SESC and the calculated results including the
SE solution, is stored in the memory of the servers. Every
utility has therefore its own dedicated in-memory database at
the SECS.

In HADRAM architecture, memory is reserved for a given
utility’s database in units of memory blocks called H-blocks.
Every computer node has several H-blocks that might belong
to one or several utilities.

Some utilities may have their H-blocks distributed over
several servers. This allocation may change dynamically over
time to allow for load balancing and/or during recovery from a
failurc of a scrver, The shaded boxes in Figure 2, represent
already reserved H-blocks. Every server has the capability to
run SE function and calculate the SE solution. During normal
operation a power utility is connected with a SECS designated
server. Its data is stored on several nodes and one node is
designated to be the main node for the given utility.
HADRAM can provide an arbitrary level of failure tolerance
against component failure, while still retaining the very
attractive performance of distributed memory (access times at
the order of network latency). In addition, HADRAM system
provides the low cost of using commodity rack servers instead

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4402341

in-memory database as a service, is how to avoid loss of data if
one of the nodes that contain data for a given utility becomes
unavailable?

Power Power
Utility Utility
#1 o #2

Server A Server B Server C Parity- Parity-
Server D Server E

0oo ooo ooo | (000 0o
oo 0oo ooo oo 0oo
000 oo oo ooo 0oo
oo oo 0o oo u[]

HADRAM components

Figure 2: SESC architecture

A. HADRAM Reliability Mechanism

Distributed storage needs to protect its data against
component unavailability [2].[15]. The only possible method
is to store data redundantly. There are several ways to
accomplish this task. The simplest solution, replication of data
(used in current EMS architectures), is however very costly.
To achieve A-failure tolerance, we need to replicate cach piece
of data in A+l components, thus using A+l times as much
storage as if we did not provide failure tolerance. A better and
more efficient storage solution is exemplified by Redundant
Arrays of Inexpensive Disks (RAID) Level 5. where m data
blocks on m different devices are grouped together in a
reliability stripe to which another block — the parity block — is
added to contain the bitwise parity of the m data blocks. The
storage overhead is now 1/m, but the system is only I-
available. To achieve higher availability, one can either put a
single data block in different reliability stripes or one can add
more parity blocks to a single reliability stripe as in the RAID
Level 6 organization. The parity data is then calculated with
an erasure correcting m out of n code. The erasure correcting
property of such a code means that all data can be
reconstructed as long as we have m out of the » = m + k blocks
in a reliability stripe (obtained by adding & parity blocks to the
m data blocks).

In our implementation we use generalized Reed Solomon
(RS) codes. Parity calculation and data reconstruction involves
calculation in a Galois field with 2 elements, where /= 8 is a
simple, canonical choice. Our implementations of these parity
calculations [6],[12] in the setting of highly available

7/17/18, 12:39 PM

Page 1 of 1

