
Performance of Linear Hashing and Spiral Hashing
Arockia David Roy Kulandai SJ

Dept. Computer Science
Marquette University

Milwaukee, WI, USA
david.roy@marquette.edu

Thomas Schwarz SJ
Dept. Computer Science

Marquette University
Milwaukee, WI, USA

thomas.schwarz@marquette.edu

Abstract—Linear Hashing is an important ingredient
for many key-value stores. Spiral Storage was invented to
overcome the poor fringe behavior of Linear Hashing, but
after an influential study by Larson, seems to have been
discarded. Since almost 50 years have passed, we repeat
Larson’s comparison with in-memory implementation of
both to see whether his verdict still stands. Our study
shows that Spiral Storage has slightly better look-up
performance, but slightly poorer insert performance.

I. INTRODUCTION

Key-value stores are a mainstay of data organization in
Big-Data. Amazon DynamoDB is a pioneering NoSQL
database built on this concept. A key-value store imple-
ments a map or dictionary. They can be implemented
in different ways. B-tree like data structures allow for
range queries, whereas dynamic hash tables have simpler
architectures. For instance, Linear Hashing (LH) is used
internally by both Amazon DynamoDB and BerkleyDB.
These data structures served originally and continue to
serve as indices for database tables. They were developed
for a world of weak CPUs and smallish and slow storage
systems, but have been successfully adapted to the world
of Big-Data.

In this article, we compare LH with a competitor
proposed at roughly the same time in the late eighties.
LH stores key-value pairs in buckets. In its standard
form, it uses a number of binary digits of the hash
of the key to allocate the key-value pair to a bucket.
At its inception, LH was implemented with buckets
being stored in a single page or a block of pages
in storage, then a magnetic hard drive. LH grows by
splitting buckets in order, using more and more digits
from the hash of the key to calculate the address. LH has
always been criticized for cyclic worst case performance
for both inserts and lookups. The ingenious addressing
mechanism of Spiral Storage or Spiral Hashing (SH), as
we prefer to call it, avoids this cyclic behavior. Like LH,
SH stores key-value pairs in buckets. Its avoidance of

cyclicity in its worst-case behavior comes at the price of
a more complex address calculation. In a well-received
study, [6], in the Communications of the ACM, Larson
compared both LH and SH (as well as unbalanced binary
tree and double hashing) and came to the conclusion
that LH always outperforms SH. This experimental result
probably reflects the greater complexity of SH address-
ing. Both data structures have changed by a considerable
margin. More data is stored in memory or in the new
NVRAM. Processor speeds and memory access times
have changed. We decided to test whether Larson’s
verdict still stands. It does not!

In the following, we first review the standard versions
of LH and SH. We then perform a theoretical Fringe
analysis for bulk insertions into both data structures.
Even if a large bulk of data is inserted, and thus a
large number of splits occur, LH’s performance is still
cyclic. Then, we explain our implementations for LH
and SH as main memory tables. The next section gives
our experimental results and conclusions.

II. BACKGROUND

Hashing schemes implement key-value stores and pro-
vide the key based operations of insert, update, delete,
and read. A record consists of a key and a value.
Hashing places the record in a location calculated from
the key. Dynamic hashing schemes adjust to changes in
the number of records so that the timing of the key based
operations is almost or completely independent of the
number of records. Most dynamic hashing schemes place
records into buckets. They differ in the organization and
behaviour of buckets. Originally, the classic dynamic
hashing schemes stored records in disks. Nowadays, they
are also used to distribute data over a distributed system
or to store records in NVRAM, flash memory or in main
memory.

A. Linear Hashing

Linear Hashing (LH) is a dynamic hashing scheme
providing stable performance, good space utilization, and
allows expansions and contractions of the LH file. It
stores records in buckets which could be, but do not have
to be, pages in a storage device. In the latter case, the
bucket capacity is limited and overflow records would be
stored in overflow buckets. LH has been widely used in
disk oriented database systems such as, BerkleyDB and
PostgreSQL [11].

The number of buckets in an LH file increases linearly
with the number of elements inserted. A popular way
maintains the load factor (i.e. ratio of number of elements
over bucket) and sets the number of buckets to bα · nc,
n being the number of records. Like Fagin’s extendible
hashing, the number of buckets increases through splits.
Unlike Fagin’s extendible hashing, the bucket to split is
predetermined and independent of the size of buckets
[4].

Internally, LH maintains a file state that in principle
consists only of the current number b of buckets. Buckets
are numbered starting with zero. From b we calculate the
level l and the split pointer s as

b = 2l + s, s < 2l.

If the number of buckets is incremented, Bucket s is split
into Bucket s and Bucket s + 2l. In this case, the split
pointer s is incremented. If s is equal to 2l, then the
level l is incremented and s reset to zero. To calculate
the bucket in which a record with key c resides, LH
uses a family of ”consistent hash functions”. One way to
implement such as family is to use a single hash function
h yielding many bits and define partial hash functions hi
by hi(c) = h(c) (mod 2i), i.e., the last i bits of h(c). If
the LH file has level l and split pointer s, the partial hash
functions hl and hl+1 are used. To be more precise, the
address of a record with key c, i.e., the bucket in which
the record should reside is first calculated as a = hl(c),
but if a < s, recalculated as a = hl+1(c).

Interestingly, the bucket that splits is not necessarily
the bucket that overflows. This makes the algorithm very
simple. An alternative is Fagin’s extendible hashing that
always splits an overflowing bucket. The price to pay is
a special directory structure. In LH [7], buckets are split
according to the scheme

0; 0, 1; 0, 1, 2, 3; 0, 1, 2, 3, 4, 5, 6, 7; · · · .

During a split all records in the bucket to split are
rehashed and either remain in the same bucket or moved
to the new bucket.

8 10 12 14 16
Buckets

0

2500

5000

7500

10000

12500

15000

17500

20000

Nr
 R

ec
or

ds

splitting Bucket 7 into Buckets 14 and 15

Fig. 1. Spiral Hashing with S=7, before and after splitting.

def address(key, S):
s = math.log(S,2)
x = math.ceil(s-key)+key
y = math.floor(2**x)
return y

Fig. 2. Address calculation in Spiral Hashing for key key and file
state S.

B. Spiral Hashing

A drawback to LH is the existence of non-split and
already split buckets. The former tend to have twice as
many records than the latter. As we will see, Section III,
the number of records rehashed when a file is split
depends on the size of the split pointer and varies
between 1/α and 2/α. To avoid this behaviour, Spiral
Hashing (SH) was invented by Martin [2, 8, 9]. Spiral
Hashing intentionally distributes the records unevenly
into Buckets S, S + 1, . . ., 2S − 1 where S is the
file state, Figure 1. When the file grows, the contents
of Bucket S are distributed into two new Buckets 2S
and 2S + 1. Afterwards, Bucket S is deleted. The
probability of a record ever been allocated to Bucket i is
pi = log2(1+1/i). This remarkable feat is achieved with
a logarithmic address calculation given in Figure 2. SH
can easily be modified to generate d new buckets for each
freed one. Larson [6] in 1988 came to the conclusion
that LH always outperforms SH. Since externalities such
as typical uses, typical sizes, and typical platforms have
changed since, we repeat the experimental evaluation and
comparison of both.

0 200 400 600 800
bucket number

0

5

10

15

20

25

30
nr

 o
f r

ec
or

ds
LH Bucket Sizes with level 9 and split-pointer 342

theoretical
simulated

Fig. 3. Number of records per bucket in an LH file with level 9 and
split pointer 342.

III. FRINGE ANALYSIS

Fringe analysis [1] analyzes the behavior of a data
structure under mass insertion. For instance, Glom-
biewski, Seeger, and Graefe showed that a steady stream
of inserts into a B-tree can create “waves of misery”,
where rebuilding leads to waves of data movements [5].
While Linear Hashing is alluring because of its concep-
tual and architectonic simplicity, its buckets during an
epoch without change of level, i.e. with buckets in the
half-open interval [2l, 2l+1), l being the level, fall into
two different categories. A bucket in an LH-file with file
state level l and split pointer s before being split, i.e. with
a bucket number between 2l + s and 2l+1 is twice the
size of a bucket after a split, i.e. with a bucket number
between 2l and 2l+s or between 2l+1 and 2l+1+s, Fig. 3.
There we show the actual and theoretically expected
number of records in one of the 854 buckets of an LH
file with 8, 000 records.

If the LH-file has a load factor of α and n records,
then there will be α · n buckets. The level is therefore
l = blog2(α · n)c. An unsplit bucket absorbs on average
2−l of all records and has therefore 2−lα · n records on
average. The average size of a bucket is 1/α as there
are n records and α · n buckets. If there are (2x + 1)/α
records, LH will have just moved to 2x buckets and
incremented the level to x. The first split (after growing
to 2x

α +d 1αe) will move on average 1
α+

2−l

α . On the other
hand, the last bucket split before the level is incremented
is with 2x+1α−1−α−1 records, and now the bucket to be
split has 2−l(2

l+1

α −
1
α) records in it. The ratio between

these two numbers is 2− 3
1+2l which converges quickly to

2. With growing i data movemement and the number of
additional keys hashed with a single insert triggereing a

10000 12000 14000 16000 18000 20000
Nr Records0

500

1000

1500

2000
Records Moved

Fringe Analysis

LH

Spiral

Fig. 4. Number of records rehashed when adding 1000 records
to a Linear Hashing and Spiral Hashing file with n records, n ∈
[10000, 20000].

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0
1
2

Access to LH file

Bucket
0

Bucket
15

Bucket
17

Fig. 5. Bucket organization in Linear Hashing with a records
arranged as singly linked-lists.

split follows a see-saw curve with the lower value being
half the higher value. The same happens when we have
a batch insert, though the differences are slightly less.
In Figure 4, we show the number of records in an LH
file starting at n records, n ∈ [10000, 20000], that are
evaluated when 1000 records (a growth between 5% and
10%) are added.

Spiral Hashing’s selling point is the avoidance of this
fringe behavior. The probability of a record belonging
to Bucket i is log2(1 +

1
i). The size of the bucket that

is split is always rather close to 1.44
α . Thus, instead of

a cyclic fringe behavior, Spiral Hashing shows close
to constant movement, independent of the number of
records, Figure 4.

IV. IMPLEMENTATIONS

We implement both LH and SH in line with Larson
and Ellis Schlatter’s recommendations as an in-memory

structure [3, 6]. The records are arranged in buckets
in two-stage dynamic arrays of linked-lists, Figure 5.
Pointers to contiguous sets of buckets are collected in a
segment array. Each segment array has a fixed number
of pointers. A master array then collects pointers to
segments. This implements a dynamic array with little
memory overhead. Segments are created when needed
and, in case of SH, deleted when unused. The range
of buckets in an LH or SH file is always contiguous.
Only the last segment and the first segment in case of
an SH file may be partially used. The unused area of
the directory array is relatively small. If the directory
array is full, it is replaced by one twice its size with the
same non-null entries. In our implementation, we used
the vector data structure from C++17 standard library.
Buckets are singly linked-lists in which we insert at the
head.

Each bucket has a lock and so does each bucket
segment. There is also a global lock for the file state.
Deadlock is avoided because locks are only acquired in
order from file state lock to a bucket lock. Locks can be
exclusive and shared. We use exclusive locks for inserts
and inclusive locks for lookup and update operations.

For our experiments, we created an LH and SH data
structures with bucket target capacities of three, five and
ten records, corresponding to load factors 1/3, 1/5, and
1/10. We tested behaviour of insertions and lookups
independently. For insertions, we generated one million
records and inserted them dividing the work among a
varying number of threads. To avoid the contention for
buckets in a small file, we also measured the runtime
after insertion of a different set of one million records.
For the lookup, we shuffled the array of records inserted
and then divided the lookups among various numbers of
threads.

V. MEASUREMENTS

Figures 6, 7, and 8 give our results. They were
obtained from MacBook Pro with 2.4 GHz 8-Core Intel
i9 processor. The y-axis gives the total execution time.
We give both the minimum and the average time of
twenty independent runs. Not surprisingly, the larger the
load factor the slower the inserts and the faster are the
lookups. For inserts, spreading the work among more
threads lowers the performance. We can attribute this
to the contention for file state and bucket segments as
frequent splits occur. Preloading has almost no effect.
Presumably, the file stays small for a comparatively
short time so that concurrent inserts are being made to
different buckets almost always. Lookups benefit from

2 4 6 8 10
threads

1

2

3

4

5

6

se
c

Linear Hashing - Insert - 1,000,000 elements
No preload, Cap = 10
No preload, Cap = 5
No preload, Cap = 3

2 4 6 8 10
threads

1

2

3

4

5

6

se
c

Linear Hashing - Insert - 1,000,000 elements
Preload, Cap = 10
Preload, Cap = 5
Preload, Cap = 3

Fig. 6. Linear Hashing insert with and without preload.

distributing the work among different threads but only
moderately so.

Spiral Hashing slightly outperforms Linear Hashing
for lookups but looses slightly for inserts. We can
attribute this to the architecture of SH which needs
more rebuild for splits, namely, the creation of two new
buckets and the deletion of one old bucket per split.
Internally, the bucket splits are implemented in the same
manner. Even for LH, a split creates two new buckets
and deletes the old one, but bucket segments are more
likely to be added in SH and only SH deletes bucket
segments. For lookups, the existence of large buckets in
LH seems to explain the slightly longer timing. Even
with a nominal capacity of ten, an un-split LH bucket
can have on average almost twenty records.

VI. CONCLUSIONS AND FUTURE WORK

Key-value stores are a mainstay technology of Big-
Data. The underlying data structures were invented some
40 years ago in a different world. Linear Hashing is used

2 4 6 8 10
threads

1

2

3

4

5

6

se
c

Spiral Hashing - Insert - 1,000,000 elements
No preload, Cap = 10
No preload, Cap = 5
No preload,Cap = 3

2 4 6 8 10
threads

1

2

3

4

5

6

se
c

Spiral Hashing - Insert - 1,000,000 elements
Preload, Cap = 10
Preload, Cap = 5
Preload,Cap = 3

Fig. 7. Spiral Hashing with and without preload.

extensively. To address a perceived downside of Linear
Hashing, Spiral Storage was proposed. A seminal article
by Larson in the Communications of the ACM showed
the superiority of Linear Hashing and work on Spiral
Hashing dried up. Presumably, the difference observed
by Larson is due to the more involved address calculation
in Spiral Hashing. In this paper, we repeated his com-
parison and found that the performance differences are
small and that Spiral Hashing might actually be sightly
advantageous.

Our implementation used locks. Lockfree implementa-
tions of Linear Hashing [10, 12] exist and one for Spiral
Hashing might be simpler because the old bucket after a
split is no longer used, but can remain accessible for a
time. This is a promising research direction. Second, a
distributed version of Spiral Hashing can select the two
best servers for the new buckets instead of being forced
to live with the placement of the old bucket as happens
in Linear Hashing. This constitutes another promising

2 4 6 8 10
threads

0.45

0.50

0.55

0.60

0.65

0.70

se
c

Linear Hashing - Lookup - 1,000,000 elements

Cap = 10
Cap = 5
Cap = 3

2 4 6 8 10
threads

0.35

0.40

0.45

0.50

0.55

0.60

0.65

se
c

Spiral Hashing - Lookup - 1,000,000 elements
Cap = 10
Cap = 5
Cap = 3

Fig. 8. Linear Hashing and Spiral Hashing lookups.

direction for future work.

REFERENCES

[1] R. A. Baeza-Yates, “Fringe analysis revisited,”
ACM Computing Surveys (CSUR), vol. 27, no. 1,
pp. 109–119, 1995.

[2] J.-H. Chu and G. D. Knott, “An analysis of spiral
hashing,” The Computer Journal, vol. 37, no. 8, pp.
715–719, 1994.

[3] C. S. Ellis, “Concurrency in linear hashing,” ACM
Transactions on Database Systems (TODS), vol. 12,
no. 2, pp. 195–217, 1987.

[4] R. Fagin, J. Nievergelt, N. Pippenger, and H. R.
Strong, “Extendible hashing—a fast access method
for dynamic files,” ACM Transactions on Database
Systems (TODS), vol. 4, no. 3, pp. 315–344, 1979.

[5] N. Glombiewski, B. Seeger, and G. Graefe, “Waves
of misery after index creation,” Datenbanksysteme
für Business, Technologie und Web, Lecture Notes

in Informatics, Gesellschaft für Informatik, Bonn,
pp. 77–96, 2019.

[6] P.-A. Larson, “Dynamic hash tables,” Communica-
tions of the ACM, vol. 31, no. 4, pp. 446–457, 1988.

[7] W. Litwin, “Linear hashing: a new tool for file and
table addressing.” in Proceedings, Conference on
Very Large Database Systems, 1980.

[8] G. N. N. Martin, “Spiral storage: Incrementally
augmentable hash addressed storage,” Theory of
Computation Report - CS-RR-027, 1979.

[9] J. K. Mullin, “Spiral storage: Efficient dynamic
hashing with constant performance,” The Computer
Journal, vol. 28, no. 3, pp. 330–334, 1985.

[10] O. Shalev and N. Shavit, “Split-ordered lists: Lock-
free extensible hash tables,” Journal of the ACM
(JACM), vol. 53, no. 3, pp. 379–405, 2006.

[11] H. Wan, F. Li, Z. Zhou, K. Zeng, J. Li, and
C. J. Xue, “NVLH: crash-consistent linear hashing
for non-volatile memory,” in 2018 IEEE 7th Non-
Volatile Memory Systems and Applications Sympo-
sium (NVMSA). IEEE, 2018, pp. 117–118.

[12] D. Zhang and P.-Å. Larson, “Lhlf: lock-free lin-
ear hashing (poster paper),” in Proceedings of the
17th ACM SIGPLAN symposium on Principles and
Practice of Parallel Programming, 2012, pp. 307–
308.

	Introduction
	Background
	Linear Hashing
	Spiral Hashing

	Fringe Analysis
	Implementations
	Measurements
	Conclusions and Future Work

