
Verification of Parity Data in Large Scale Storage Systems

Thomas Schwarz, S.J.
Department of Computer Engineering

Santa Clara University
Santa Clara, CA 95053, USA

tjschwarz@scu.edu

Abstract

Highly available storage uses replication and other
redundant storage to recover from a component failure.
If parity data calculated from an erasure correcting
code is not updated or becomes otherwise corrupted,
recovery from a failure does not recover the correct
data but mostly garbled data. This paper presents an
algebraic signature scheme that can detect parity
discrepancies for parity calculated with XORing,
generalized Reed-Solomon codes, or convolutional
array codes. Maintaining and checking the signature
of client and parity data allows us to ensure coherence
in the storage system and thus to accurately rebuild
data on lost devices. Our scheme is combined with disk
scrubbing, necessary to detect masked disk failures.
Keywords: Highly available storage system.
Redundancy group coherence. Reed-Solomon codes.
Convolutional array codes.

1. Introduction

As disks outpace tapes in capacity increases, large

scale storage systems based on disks have reached the
planning stages at institutions such as the U.S. National
Laboratories. Such a system encompasses several
thousand disks and reaches a storage capacity of 1-5
Petabytes (PB). Despite its large size and despite its
use of commodity disks, the availability of files needs
to be very high, since data often cannot be reproduced
or only at large costs. For example, the system might
store terabytes of data striped over many disks from a
single simulation.

The large number of devices in such a system
increases the likelihood of failures. For instance, error
rates of one undetected, repeated read error of 1 in 1015
bits on a commodity disk are common. A single disk
running at 25MB/sec would experience such an error
about once a year. In a large scale storage system with

10,000 disks, such an error will occur once per hour
somewhere in the system. Many of the error modes are
masked such as this one, that is, we only detect them
when we try to read a block of data, or even more
insidiously and fortunately much more rarely, if we try
to use the data in the block.

To protect against the effect of failures, we store
data redundantly. For example, we store two copies of
each datum (mirroring), or we group data blocks
together in a redundancy group to which we add a
parity block that contains the bitwise xor (the parity) of
the data blocks. The latter is the scheme used in RAID
Level 5. To achieve higher levels of availability, we
can place the same data block into a number of
redundancy groups, or even simpler, add more than one
parity block to the redundancy group. The latter
involves using an erasure correcting code (ECC). To
clarify our argument, we also call a group of mirrored
or replicated blocks a redundancy group.

The large number of devices in the system not only
increases the likelihood of failures but forces us to pay
attention to failure modes that are negligible for
traditional disk arrays with less than one hundred disks.
This paper focuses on one of these concerns, namely
how to detect if incoherency within a redundancy
group. If the coherence of redundant data is lost, then
data rebuild after a failure does not recover the data lost
but some seemingly random value.

To illustrate the redundant data coherency problem,
assume that we mirror data. A device with one of the
three replicas fails. Because of an undetected,
repeatable read error, the two remaining replicas differ.
To decide the true copy, we need to investigate their
meaning, that is, by finding out which of the two values
makes sense. This is sometimes impossible, and most
often requires human intervention. The problem
becomes worse if we use ECC.

We solve the problem of undetected client and parity
data corruption with a scheme based on signatures with

algebraic properties. Signatures or hashes are small
strings calculated from the contents of a storage block.
They change when the block is slightly altered and two
arbitrary blocks have the same signature only with
probability 2-f, where f is the length of the signature in
bits. Our signatures allow us to calculate the signature
of a parity block (such as produced by RAID 5) or a
generalized parity block (produced by an erasure
correcting code such as Reed-Solomon or an array
code) from the signatures of the data blocks.

To protect data integrity, we maintain a signature for
each data or parity block in the disk farm, stored on the
disk itself. Periodically, each disk checks whether the
signature faithfully reflects the block contents. Also
periodically, each disk checks whether for any
redundancy group (formed by client data blocks and
associated parity blocks) it stores, the signatures prove
that parity blocks reflect the data. Our scheme works
for n-way mirroring, RAID Level 5 like parity groups
with a single (XOR-)parity block, and RAID Level 6
like parity groups with more than one parity block that
use generalized Reed Solomon codes or convolutional
array codes.

2. Disk Based Large Storage Systems

Disk arrays have gained increasing market share and

are expanding into near-line systems that were once
served with tape drives. The internet archive [9] is an
example of such a facility that stores over 100 TB of
compressed data on approximately 150 desktop
computers with four hard drives each. In order to deal
with the likelihood of device failure in systems of this
and larger size, we introduce some type of redundancy
into the storage of data. A prevalent choice is
mirroring as implemented in RAID Level 1, 10, 0/1 etc.
Calculating and storing parity is another important
technique, in which the bitwise parity (the exclusive or)
of a number of data blocks is stored on yet another
disk. Since any data block is also the parity of all other
data blocks and this parity block, it is possible to
reconstruct any lost data block as long as all the others
are still available. Raid Levels 4 and 5 use this scheme.
For systems in the PB range, we need to use a higher
level of protection than provided by simple RAID [3],
[18], [19]. To do so, we can group blocks on different
disks in a redundancy group like before, but add two or
more parity blocks to each redundancy group. We then
use Erasure Correcting Codes (ECC) to calculate these
parity blocks. We describe two good ECC in Section 5.
RAID Level 6 uses this scheme. Alternatively, we can
place blocks in more than one redundancy group and
add a parity block for each of the redundancy groups.

In general, we place m blocks of user data into a
redundancy group, add k parity blocks to the group, so
that all n = m + k blocks reside on different disks and
so that access to any m blocks (whether parity or data)
allows us to rebuild any lost block. We refer to such a
scheme as an m/n scheme and call it k available.

3. Problem Definition

3.1. Masked Disk Drive Failures and the Data

Parity Coherency Problem

Data in a storage system faces three threats: outright

disk failure, disk block failure (when we cannot read a
block on an otherwise functioning disk even with
multiple trials), and data corruption. Device failures
are easy to detect and we deal with device failure by
using the storage redundancy to rebuild the contents of
the drive on one or more other drives. We detect block
failures by performing disk scrubbing, that is, reading
periodically all the data on the disk. Once a block
defect has been detected, we can rebuild the data on the
affected block on another disk or even in the same spot.
(Sometimes an off-track write destroys data on an
adjacent track, but the affected block of course be
reused.)

Block failures can arise in a number of ways. For
example, the magnetic media might deteriorate in a
spot, maybe because a particle was wedged between the
head and the media, scratched the surface, and
permanently destroyed the capability of the media there
to retain magnetic data [7]. Occasionally, a disk suffers
bit rot, that is, one or a few bits flip. For example, at
current areal densities achieved on production hard
drives, traces of the super-paramagnetic effect
(thermodynamic instability of small magnetic spots)
can already be detected on every drive. In the vast
majority of cases, an internal checksum flags an
affected block as unreadable, when accessed.
Sometimes, this bit rot is not detected and corrupted
data is given to the user. A much more potent source of
data corruption is of course software failure. For
example, a write operation might not be performed at
all the disks that need to be written and leave the
application data in an incoherent state.

Media errors and data corruption are masked
failures, they only become apparent when we try to use
the affected data. Data corruption is more insidious,
because we need to recognize the corruption. This is
difficult enough for user data, but we can only discover
the corruption of parity data by comparing it with the
user data that it protects. This is the parity-data
coherency problem. It can prevent us from successfully

rebuilding otherwise lost data. Consider the following
two scenarios:

Scenario 1: We store three replicas of datum A: A0,
A1, and A2. Assume replica A1 is lost and that replica A0
and A2 differ. Which one is the true copy which we
want to replicate twice? We need to base our decision
on whether A0 or A2 make sense. If both make sense,
we are stuck.

Scenario 2: Assume that we use a n/(n+2) scheme,
that is, that we group n data blocks (or objects) D0, D1,
… Dn-1 into a redundancy group and add parity blocks
(or objects) P0 and P1. Of course, all data and parity
blocks are located on different disks. Now assume that
D1 has suffered data corruption, but is still readable.
Assume that the device carrying D0 fails. We can
recover by assessing any n of the n+1 remaining
blocks. But if we include D1 into the mix, then the
recovered version D0, let us call it D0’, is not the
original D0. The true D0 is still recoverable, but only
by using D2, D3,…, P0, P1. Again, we can only make a
decision based on whether the recovered D0 is
meaningful or by checking D1,…Dn-1 directly. This
scenario shows that unmasking the corruption at D1 has
a direct effect on the availability of the otherwise
unrelated data blocks D0, D2,… Dn-1.

The redundancy group coherency problem can arise
not only from bit rot, but also from faulty software that
on rare occasions might fail to update some parity data
when client data is written or vice versa. As we have
seen, this affects the reliability of all data blocks in the
redundancy group.

To summarize, in a highly available storage system,
we need to discover quickly masked failures such as
media failures and data corruption. In addition, we
need to maintain the coherency of data within a
redundancy group.

3.2 Signature Schemes

Our solution flags corrupted or incoherent data in

the hope that quick detection allows us to repair the
damage before any lasting harm is done. We associate
a signature with each data and parity block. These
blocks can be quite large, e.g. 1GB. The determination
of the optimal size is beyond the scope of this paper,
but see [18], [19]. In contrast, our signatures are quite
small, as small as 4B or 8B. The signature (a.k.a. hash,
checksum) is a bit string of fixed length l that is
calculated from the contents of the block. We could
use cryptographically strong hashes such as MD5 and
SHA1 as in Tripwire [11] to verify block contents, but
this would not protect us from incoherent parity data.

We use an “algebraic signature” defined below that
we store with each block. The signature is guaranteed

to change with small changes in the block. Two random
blocks have the same signature only with probability 2-f
(where f is the length of the signature in bits). The
algebraic properties of the signature allow us to
calculate the signature of an updated block from the
update information only. They also allow us to
calculate the signature of parity blocks, whether
generated by parity as in RAID 5, or by generalized
Reed-Solomon or the convolutional array codes.

4. Algebraic Signature Definition and

Properties

4.1. Galois Field Operations

Our algebraic signatures use Galois field

calculations. The elements of this Galois field are
symbols, that is, bit strings of length f. Typically, f = 8,
and then a symbol is simply a byte. Sometimes it is
advantageous to use f = 16 (half-words) or even f = 32
(words). We can add, multiply, and divide symbols
just as we manipulate real numbers or rational numbers
(fractions). There are two special elements, the zero
element 0 and the one element 1, given by the bit
strings 0000 … 0000 and 0000 … 0001. The addition is
simply the bitwise XOR of the string. The
multiplication is more involved and several
multiplication algorithms are known. We use a method
based on logarithm and antilogarithm table. It is fairly
easy to find an element α in the Galois field such that
all non-zero elements are powers of this α. Such
elements are called primitive. If β = αi, 0 ≤ i ≤ 2f-1,
then we write i = logα(β) and β = antilogα(i). For
nonzero γ and η we then have

 antilog (log () log ()).α α αγ η γ η⋅ = +
A product with one or both factors zero is of course
zero. We implement now Galois field multiplication
through table look-ups. The size of the tables in our
implementation [13] is a moderate 3·2f for f = 8, 16. For
f = 32, a multiplication can be done using five
multiplications in the smaller Galois field with f = 16.
See [13] or [14] for a more detailed explanation. While
we define signatures in terms of Galois field operations
(Section 4.2), we actually do not use multiplications
when we calculate signatures (Section 4.3).

4.2. Signature Definition

A block P is a string of n symbols pi, 1≤i≤l, which in

turn are bit strings of length f. In our case, the symbols
pi are bytes or 2-byte words. The symbols are elements
of the Galois field, GF (2f).

Definition 1: Let α be a primitive element of the
Galois field GF(2f), P = (p1,p2,....pl) be a block, and m
be an integer ≥ 2. Then define

2 -1

1

1

, 1

sig () :

sig () : (sig (),sig (),sig ()..., sig ())m

l

m

P p

P P P P

ν
α ν

ν

α α α α

α −

=

=

=

∑
P

We call sigα,m the m-signature with base α.

The m-signature is a vector with m coordinates, each

of length f bits, so that the combined signature is mf bits
long. The first coordinate of the m-signature is the
XOR of the symbols in the block. This coordinate is
included because of the ease of calculation, but not
essential to the properties of the signature, which could
alternatively consists of the sigβ(P) with β=α1, ... αm.
Definition 1 is related, but not identical to the one in
[2] and [10]. We now list a number of properties of our
algebraic signatures:

Proposition 1: If the block length l is smaller than 2f –
1, then the m-signature with base α discovers any
changes of up to m symbols.

Proposition 2: The probability that two signatures of
two random blocks coincide is 2-mf.

Proposition 3: Let us change block P = (p1, p2, … pl)
to block P’ where we replace the symbols starting in
position r and ending with position s-1 with the string

. We define the ∆-string as ∆ = (δ0, δ1,
… δs-r-1) with δi = pr+i – qr+i. Then for any β∈GF(2f):

1, , ,r r sq q q+ " 1−

∆ . sig (') sig () sig ()rP Pβ β ββ= +

Proposition 4: If we concatenate block P1 of length l
with block P2, then we have

1 2 1 2sig (|) sig () sig ().lP P P Pβ β β= + β

Proposition 5: Let P(i) , 1≤ i ≤ r, be r blocks, and let
P(parity) be the block generated as the parity of the blocks
P(i) , 1≤ i ≤ r. That is, the symbols of P(par) are
calculated as p(par)

i = p(1)
i ⊕ p(2)

i ⊕ …⊕ p(r)
i . Then

where the xor of vectors is taken coordinate-wise.

(par) (1) (2) ()
, , , ,sig () sig () sig () ... sig ()r
n n n nP P Pα α α α= ⊕ ⊕ ⊕ P

Our signature also detects swapping two sub-blocks

in the same block [14], [16]. The proofs of
propositions 1-5 is in [14]. Prop. 2 says that the
probability of a collision – two blocks having the same
signature – is minimal. Prop. 3 shows that algebraic
signatures allow us to update a signature of a changed

block without recalculating the signature of the whole
block. Without this property, maintaining signatures of
large blocks through updates would involve
recalculations. Prop. 5 implies that we can use our
algebraic signature in order to check the coherency of
data blocks with a parity block generated as the XOR
of the data blocks. This proposition allows us to check
the coherence of an xor parity block with its data
blocks through signature comparisons alone. We
expand this key property in Section 5.

4.3. Signature Calculation

If we directly implement the definition, calculating

the signature of a block with n symbols takes ~2n
multiplications and n additions. A typical block in our
scheme might consist of 16M symbols of two bytes
each, though larger blocks seem practical. Because of
this large size, it is important to improve the signature
calculation. We can do this by picking a special
primitive element α, namely the bit string 0000…0010.
We can multiply and element (bit string) β by α by
shifting β to the left. If this results in an overflow, we
XOR with a constant bit string, the so-called generator
polynomial of the Galois field. Since we can use a
Horner scheme, that is, write
 ()()()()1 2 2sig () l l lP p p p pα α α α α− − 1p= ⋅ + + + +"

we have reduced the complexity of the signature
calculation considerably. To process a single symbol in
the block, we multiply the signature up to this symbol
with α by shifting and reducing if necessary, and then
xoring the symbol to the current signature. Following
[2], we can further improve the multiplications by α by
accumulating the overflows of several multiplications
and reduce them according to a pre-computed table.
Processing a single element costs us then a shift and an
XOR and every so often, processing the overflow bits
by a table look-up and a xoring. This technique also
applies to α2 = 0000 … 0100, α3 = 0000 … 1000 and
other small powers of α, though with less savings.

5. Erasure Correcting Codes and

Signatures

To generate the parity blocks from the data blocks in

a redundancy group, we use an erasure correcting code.
Given a vector a= of data symbols, where
a1 is taken from the first data block, a2 from the second
data block, etc., an ECC generates a longer vector u =

where the parity symbols
am+i are calculated from the data symbols. A block

1 2(, , ,)ma a a…

1, ,)m ka+ +…1 2(, , , ,m ma a a a…

consists of a string of symbols. We use the first symbol
in all data blocks to form the data symbol vector a, then
use the ECC to generate vector u, then take the m+ith
coordinate of u to be the first symbol in the ith parity
block. We then use the second symbol in each data
block to calculate the second symbol in each parity
block, and so on, until we have populated the parity
blocks.

The simplest ECC are n-fold replication codes,
where we have only one data symbol and n-1 parity
symbols, all equal to the data symbol. Formally, a=(a)
and u = (a, a, … , a). The parity and the data blocks
are then undistinguishable. The next simplest example
is the m-parity code, with a and u = (a1,a2,
…, am, a1⊕ a2⊕…⊕am) . This is the RAID 5 scheme.

1(, ,)ma a= …

Generalized Reed-Solomon codes use a generator
matrix G with n rows and m columns. The generator
matrix has the form (I | P) where I is the m-dimensional
identity matrix. The block symbols and the coefficients
are elements in the same Galois field. The relationship
between the a and u-vectors is simply u = a·G. The
peculiar form of G implies that the coordinates of a are
the first m coordinates of u. To calculate a single parity
symbol, we can merely multiply a with the
corresponding column of P. The m-parity code is a
special case with P = t(1, 1, … ,1). (The superscript “t”
stands for transpose, that is, P is a m-dimensional
column vectors with m coefficients 1.) The following
proposition generalizes Prop. 5:

Proposition 6: Let B1, … Bm be m data block and let
Bm+1, … Bn be the parity blocks calculated with a
generalized Reed-Solomon code. Then
(1 2 1sig (), sig (),..., sig (), sig (), , sig ()m mB B B B Bβ β β β β+ …)n

is a code word of the generalized Reed-Solomon code.

Prop. 6 says that the signature of a parity block is
calculated as the Reed-Solomon code calculated parity
of the signatures of the data blocks. Accordingly, by
looking at the signatures of the blocks only, we can
discover (with very low probability of error) whether
the data blocks indeed generated these parity blocks. If
k = n-m is large enough to correct errors, we can even
determine which data block has been changed without
changes to the parity blocks or which parity blocks
have not been updated, as long as the number of blocks
in error is smaller than k/2.
Proof: Let Pλ, λ ∈ {m+1, …, n} be a parity block.
Denote the ith element of Pλ with pi,λ. Similarly, denote
the ith element of a data block Pν with pi,ν. Finally,
write the coefficient in row i and column j of the

generator matrix G as gi,j. According to the definition
of generalized Reed-Solomon codes,

 , ,
1

m

i ip p ,gλ ν ν
ν =

= ∑ λ

 We now calculate

1
,

1

1
, ,

1 1

1
, ,

1 1

1
, ,

1 1

1
, ,

1 1

,
1

sig ()

()

sig ()

l
i

i
i
l m

i
i

i
l m

i
i

i
m l

i
i

i
m l

i
i

i
m

P p

p g

p g

p g

p g

P g

β λ λ

ν ν λ
ν

ν ν λ
ν

ν ν λ
ν

ν ν λ
ν

β ν ν λ
ν

β

β

β

β

β

−

=

−

= =

−

= =

−

= =

−

= =

=

=

=

=

=

=

=

∑

∑ ∑

∑∑

∑∑

∑ ∑

∑

Thus, the signature of the parity block is calculated as
the Reed-Solomon code parity of the signatures of the
data blocks and the proposition follows.

Convolutional Array Codes (CAC) use only XOR
operations to generate parity data. If we think of the
bits in the data block put into columns, then a CAC
uses horizontal and diagonal parity lines at various
slopes to generate parity bits in additional parity
columns. A CAC will generate parity blocks that are
longer than data blocks. However, this “overhang” is
only a few bytes and could be stored together with
metadata of the parity block. Figure 1 shows a small
CAC with three data blocks and three parity blocks.
The first parity block (block 4 from left to right)
contains the parity along horizontal lines, the second
one along lines of slope 1, and the last one along lines
of slope 2. Since we can store the overhang separately
from the blocks with the metadata, CAC are very
attractive because of their speed and simplicity of
erasure correction. We have the analogue to
Proposition 6.

Proposition 7: Let P be a parity bucket generated

by a CAC along the lines of slope s. Let B1, …, Bm be
the data buckets. Then sigβ(P) = sigβ(B1) + β s sigβ(B2)

+ … + β (m-1)s sigβ(Bm).

Proof: We recall that the addition in the Galois field is
the XOR operation. The symbols pi in P are thus sums
of symbols in B1, …, Bm. We write pi,λ for the ith
symbol in Bλ and pi for the ith symbol in P. The number

The size of the blocks used for redundancy group is
usually much larger than the 512B of disk blocks or the
small multiples of these blocks in which file systems
typically allocate storage. The results in [18] and [19]
indicate that currently block sizes of GB range are
appropriate. When we are speaking of blocks here, we
mean these larger blocks.

of symbols in P is l+(m−1)s. In the following
formulae, we assume that we pad formally the data
blocks Bλ with zeroes, that is, that pi,λ = 0 if i<1. We
have

 (1) ,
1

m

i i sp p ν ν
ν

− −
=

=∑ .

We now calculate

(1)
1

1

(1)
1

(1) ,
1 1
(1)

1
(1) ,

1 1

(1) 1
,

1 1

(1)

1

sig ()

sig ()

l m s

l m s m

s

l m sm

s

m l
s

m
s

P p

p

p

p

B

µ
µβ

µ

µ
µ ν ν

µ ν

µ
µ ν ν

ν µ

ν µ
µ ν

ν µ

ν
νβ

ν

β

β

β

β β

β

+ −
−

=

+ −
−

− −
= =

+ −
−

− −
= =

− −

= =

−

=

=

=

=

=

=

∑

∑ ∑

∑ ∑

∑ ∑

∑

 We maintain a single data structure that maintains
the m-signature with base α of each block of a
redundancy group on the disk drive. When we change
data in the block, we calculate the new signature from
the old signature value and the signature of the change,
by applying Prop. 3 to the coordinates of the m-
signature. In this way, maintaining the signature map
only costs minimal overhead.

This proves the proposition.

0

1

0 2

1 0 3 1

0 0 0 0 0 0 2 1 0 4 2 0

1 1 1 1 1 1 3 2 1 5 3

2 2 2 2 2 2 4 3 2 6 4

3 3 3 3 3 3 5 4 3 7 5

 a

a

a a

a b a b

a b c a b c a b c a b c

a b c a b c a b c a b c

a b c a b c a b c a b c

a b c a b c a b c a b c

⊕

⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

0

1

2

3

b

⊕

We run two distributed background processes in
order to find masked failures, including redundancy
group incoherence. First, we periodically scrub a disk,
that is, if necessary (such as in a MAID [4], [5]), we
power a device up and compare the m-signatures
maintained in our data structured with the one
recalculated by accessing all the blocks. This
operation detects media defects and data corruption.
Second, we periodically use Prop. 5, Prop. 6, or Prop. 7
to check whether the m-signatures of the parity blocks
are the ones that the signatures of the data blocks in the
redundancy group imply. If this is not the case, then
we know that the data in the redundancy group is
incoherent. If we use replication instead, we merely
have to compare the signatures. Detecting this problem
before a device failure triggers a reconstruction gives
us more leverage to fix the problem, if necessary by
simply recalculating parity blocks.

7. Related Work

Signatures are frequently used to identify objects

and to capture changes. Applications include pattern-
matching (e.g. the fundamental proposal by Rabin and
Karp [10]), protection against unauthorized updates
(e.g. Tripwire by Kim and Spafford [11]), discovering
differences in replicated databases, first proposed by
Metzner [15] but then elaborated by many authors),
synchronizing replicas (e.g. the work by Suel, Noel,
and Trendafilov [17]), and distributed backup such as
Pastiche by Cox, Murray, and Noble [6], to name but a
few. Some applications use signatures with algebraic
properties, e.g. decomposable hash functions [17].
Karp–Rabin fingerprinting [10] uses a formula close to
the one that we are proposing for a distributed pattern
matching algorithm that only sends the signature of the
pattern to the searched sites. Karp-Rabin type
fingerprints have recently been used to discover

Figure 1: Array code example

6. Signature Data Structure
We recall that large storage systems place data into

redundancy groups. These consists of n blocks so that
m < n suffice to rebuild all data on these blocks. As we
have seen, if the data in the redundancy group do not
reflect the same state of the system, that is, if the
redundancy group lacks coherence, then the capacity of
the system to recover from device failure might be lost.
Ascertaining redundancy group coherence is the goal of
our scheme. Our solution is build on another need,
namely to quickly detect bit rot and other types of
masked, partial failure of a device.

similarity in documents, e.g. [2]. To my best
knowledge, no one has yet used signatures with
algebraic properties to compare parity data. Litwin and
Schwarz [14] derive the fundamental properties of
algebraic signatures and discuss their use in Scalable
Distributed Data Structures (SDDS). Litwin, Mokadem,
and Schwarz [12] report on a first implementation of
the signature calculations. The reported speeds show
that algebraic signature calculation is about as fast as
that of SHA1 signatures, but we believe that the results
can be improved.

8. Conclusion and Future Work

As storage systems grow in size, statistically burst of

failures become likely. Large size (PB-scale) and
increasing demands on resilience force us to take
failure modes into account that are negligible for
smaller systems. This paper addresses one such mode,
namely the undetected discrepancy between client data
and parity data in a redundancy group. This paper
proposes a solution that works in conjunction with the
detection of block failures such as media defects. I have
presented an algebraic signature that can discover
whether parity data generated by XORing, by a
generalized Reed-Solomon code, or by a convolutional
array code reflects faithfully the client data.

Future work will include an implementation to prove
the computational feasibility of the scheme. We also
need to integrate disk scrubbing with the design of
large scale storage systems, evaluate its impact on
system reliability, and investigate optimal strategies in
systems where disks are typically powered off
(MAIDs).

Acknowledgement

I gratefully acknowledge support from the Santa Clara
University IBM Research Grant EIBM0015 and from a
generous gift by Microsoft Research.

References

[1] Blaum, M., Farrell, G., van Tilborg, H.: Array codes. In
Pless, Huffman (ed.) Handbook of Coding Theory II, p.
1855 – 1909. North Holland, 1998.

[2] Broder, A. Some applications of Rabin's fingerprinting
method. In: Capocelli, De Santis, and Vaccaro, (ed.),
Sequences II: Methods in Communications, Security,
and Computer Science, p. 143 – 152. Springer-Verlag,
1993.

[3] Corbett, P, English, B., Goel, A., Grcanac, T., Kleiman,
S., Leong, J. and Sankar, S.: Row-diagonal parity for
double disk failure correction. In Proc. of 3d Usenix

Conf. on File and Storage Technologies, San Francisco,
CA, 2004.

[4] Colarelli, D. and Grunwald, D.: Massive arrays of idle
disks for storage archives. In Proc. IEEE/ACM Conf. on
Supercomputing (SC2002), p. 47-58. 2002.

[5] Colarelli, D., Grunwald, D., and Neufeld, M.: The case
of massive arrays of idle disks (MAID). In Proceedings
of Usenix FAST ’02. 2002.

[6] Cox, L., Murray, C., and Noble, B.: Pastiche: making
backup cheap and easy. In Proc. of 5th Sym. Operating
Systems Design and Implementation, OSDI’02, p. 285-
298. 2002.

[7] Elerath, J. and Shah, S.: Disk drive reliability case study:
Dependence upon head fly-height and quantity of heads.
In 2003 Proc. Annual Reliability and Maintainability
Symposium, RAMS’03, p. 608-612. 2003.

[8] Hellerstein, L, Gibson, G., Karp, R., Katz, R. and
Patterson, D.: Coding techniques for handling failures in
large disk arrays. In Algorithmica, vol. 12, p. 182-208,
1994.

[9] Internet Archive. http://www.archive.org/web/researcher
/data_available.php.

[10] Karp, R. and Rabin, M.: Efficient randomized pattern-
matching algorithms. In IBM Journal of Research and
Development, Vol. 31, No. 2, March 1987.

[11] Kim, G. and Spafford. E.: The Design and imple-
mentation of Tripwire: A file system integrity checker.
In Proc. of the ACM Conference on Computer and
Communications Security, p. 18-29, 1994.

[12] Litwin, W., Mokadem, R. and Schwarz, T.: Disk backup
through algebraic signatures in scalable and distributed
data structures. In Proc. 5th Workshop on Distributed
Data and Structures, Thessaloniki, 2003 (WDAS’03).

[13] Litwin, W., Schwarz, T.: LH*RS: A High-Availability
Scalable Distributed Data Structure using Reed-Solomon
Codes. In Proc. 2000 ACM SIGMOD Int. Conf. on
Management of Data, Dallas 2000, p. 237-247.

[14] Litwin, W., Schwarz, T. Algebraic Signatures for
Scalable Distributed Data Structures. Proc. of the 20th
International Conference on Data Engineering (ICDE),
Boston, 2004, p. 412-423.

[15] Metzner, J. A Parity Structure for Large Remotely
Located Data Files. IEEE Transactions on Computers,
Vol. C – 32, No. 8, 1983.

[16] Schwarz, T., Bowdidge, R. and Burkhard, W.: Low Cost
Comparison of File Copies. In Proc. Intern. Conf. on
Distributed Computing Systems, Paris, Fr., 1990,
(ICDCS 5 Proceedings), p. 196-202.

[17] Suel, T., Noel, P., and Trendafilov, D.: Improved File
Synchronization for Maintaining Large Replicated
Collections over Slow Networks. In Proc. 20th Int. Conf.
on Data Engineering, ICDE, Boston, 2004, p. 153-164.

[18] Xin, Q., Miller, E, Long, D., Brandt, S., Litwin, W., and
Schwarz, T. Selecting reliability mechanisms for a large
object-based storage system. In 20th Symp. on Mass
Storage Systems and Technology. San Diego. 2003.

[19] Xin, Q., Miller, E, Schwarz, T: Evaluation of distributed
recovery in large-scale storage systems. 13th IEEE

International Symposium on High Performance Distributed Computing, HPDC’04, Honolulu, HI, 2004.

	Introduction
	Disk Based Large Storage Systems
	Problem Definition
	Masked Disk Drive Failures and the Data Parity Coherency Problem
	Signature Schemes

	Algebraic Signature Definition and Properties
	Galois Field Operations
	Signature Definition
	Signature Calculation

	Erasure Correcting Codes and Signatures
	Signature Data Structure
	Related Work
	Conclusion and Future Work
	
	Acknowledgement

	References

