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Abstract— Linear Hashing is a widely used and efficient
version of extensible hashing. A distributed version of Linear
Hashing is LH∗ that stores key-indexed records on up to
hundreds of thousands of sites in a distributed system. LH∗
implements the dictionary data structure efficiently since it
does not use a central component for the key-based operations
of insertion, deletion, actualization, and retrieval and for the
scan operation. LH∗ allows a client or a server to commit an
addressing error by sending a request to the wrong server. In
this case, the server forwards to the correct server directly or in
one more forward operation. We discuss here methods to avoid
the double forward, which is rare but might breach quality of
service guarantees. We compare our methods with LH∗ P2P that
pushes information about changes in the file structure to clients,
whether they are active or not.

Index Terms—Scalable Distributed Data Structure; Linear
Hashing; LH*; Cloud Computing

I. INTRODUCTION

Cloud computing has brought distributed computing to the
masses. It has also rekindled an interest in scalable distributed
data structures and algorithms. Among scalable distributed
data structures, LH∗, the distributed version of linear hashing
offers fast access to records distributed over potentially hun-
dreds of thousands of (virtual) servers [7]. LH∗RS provides the
same capability, but stores data in redundant form, in order to
provide scalable high availability, where the number of down
servers without loosing access to the data increases as the
LH∗RS-file becomes larger [6].

LH∗ is a scalable, distributed data structure. It adjusts the
number of servers to the number of records. One of its most
compelling feature is the absence of a central component
that allows a client to find the address of a record. Instead,
clients store a view of the LH∗ file, a table, which allows
the client to find the current location of a record based on
its record identifier. A file grows and shrinks by splitting
and merging buckets. Such an operation outdates the view of
all clients. Instead of pushing this information to all clients
or even to other servers, LH∗ allows clients and servers to
have out-of-date views of the file state. In this case, clients
can commit addressing errors and the server that receives an
erroneous request might not be able to forward directly to the
correct server. However, the structure of LH∗ ensures that a
request reaches the correct server in at most two forwards and
guarantees that no client commits the same addressing error
twice. It turns out that most requests go directly to the correct

server, some need one additional forward and that double
forwards are usually quite rare. Nevertheless, the additional
transit time for a double forward might cause havoc with cloud
Quality of Service (QoS) guarantees.

We present here ways to minimize the number of forwards
and especially the number of double forwards. In contrast to
the doctorate work by Yakouben [10], [13] where split / merge
information is pushed to clients in groups, we investigate
here methods that prioritize updating servers. As it turns out,
relatively small changes to the LH∗ algorithms are sufficient
to make double forwards very rare whie not adding noticeably
to the load of servers.

The rest of the article is organized as follows: We review
shortly relevant work in Section 2. Section 3 briefly reviews
the most important aspects of LH∗ without going into details
that are not necessary for the understanding of our contribu-
tions here. We then present our mechanism to minimize the
need for message forwarding by avoiding clients requesting
service from a server that does not have the relevant record in
Section 5. The fifth section reports on our experimental results.
We then conclude and lay out avenues for future work.

II. RELATED WORK

Litwin introduced Linear Hashing in 1980 [4] and (with
Neimat and Schneider) LH∗ in 1993 [7], [9]. This is not the
only distributed data structure based on hashing, among the
proposals, DDH [1] and Extendible Hashing [2] stand out.
Other scalable distributed data structures exists such as RP∗
[8], distributed k-d trees [11], and distributed search trees [3],
to name a few. LH∗ has seen been expanded to a variety of
schemes providing availability. An overview is given by [5].

LH∗RSP2P provides the same capability by pushing file state
information to clients [10], [13]. This method is preferably
to ours if the set of active clients is stable since it avoids
all double forwards for clients of long duration. However, we
argue that in the typical cloud structure, clients come and go
and exist only for relatively short times, during which they
might make lots of accesses. LH∗RSP2P occurs a big message
overhead under these circumstances.

III. LH∗
Linear Hashing (LH) is a widely adopted form of extensible

hashing. It stores records in buckets, whose number automat-
ically adjusts to the total number of records. The number of
buckets determines the file state. A simple address calculation
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based on the file state determines the location of the record
from its record identifier. The LH-file maintains a load factor
defined to be the average number of records in a bucket. If
the load factor becomes higher than a certain preset value
or if a bucket overflows (by containing to many records), a
new bucket is created through a split from another bucket. In
contrast to other forms of dynamic hashing such as Fagin’s
extensible hashing [2] or Devine’s DDH [1], the bucket to
be split is not necessarily the one that caused the overflow.
Buckets are numbered starting with 0 and split in a fixed order
0, 0, 1, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 6, 7, . . . The design of LH
results in slightly worse storage utilization than with extensible
hashing, but also in considerably faster record lookups [12]
because no central directory structure is needed. If there is an
underflowing bucket or if the storage utilization is too small,
then a merge operation undoes the last split operation.

A. General File Structure
The distributed version of LH, LH∗ stores records that

consist of a record identifier and the contents. The latter can be
structured according to the needs of an application. In contrast
to LH, LH∗ stores the buckets in different servers. They tend
to be much larger (several hundreds of MB versus three or
four records). As in LH, the LH∗ file uses split and merge
operations to adjust the number of buckets to the file size.

While LH∗ can start with any number of initial buckets, we
discuss here the simpler variant with only one initial bucket.
In this case, the file state consists of two integer parameters,
the file level i and the split pointer s. The total number N of
buckets is always N = 2i +s. Reversely, a number N of buckets
determines the level as i = ⌊log2(N)⌋ and the split pointer as
s = N−2i.

LH* supports the record based operations of insert, delete,
read as well as global operations of scanning – looking for all
records with a certain pattern in their contents and function
shipping, as long as the functions shipped use only a single
record. The later capability was a precursor of the map-reduce
scheme.

B. Addressing
Each record is identified by a unique Record IDentifier

(RID). Given a key c treated as an integer, the bucket number
a where the record resides is given by the LH-addressing
algorithm:

(LH) a := hi(c); if a < s then a := hi+1(c)

with hash functions h j defined by h j(c) = c mod 2 j and where
s and i constitute the file state.

Each client uses its version of the file state, called its image.
This file state can be identical to the actual state of the LH*
file, but it can also be outmoded. In this case, many address
calculations will still succeed, as we will see. However, the
client can also send a request to the wrong bucket. Any bucket
needs to check whether it has the record and if necessary
calculate the bucket, where the record should be. This calculate
could also be based on out-of-date information, but LH∗ can

def check(self, key):
aprime = h(self.j, key)
if not aprime == a:

atwoprime := h(self.j-1, key)
if atwoprime > a and atwoprime < aprime:

aprime = atwoprime
return aprime

Fig. 1: Competency check executed when a server with address
a receives a message with key key.

def updIm(self, j, a):
self.i = j-1
self.s = a+1
if n >= 2**self.i:

self.n = 0
self.i = self.i+1

Fig. 2: Image update algorithm for the file state image at a
client that receives an IAM messages with bucket level j and
bucket address a.

be shown to find the correct address in at most two forwarding
operations. If a client has made an addressing mistake and sent
the request for a record to an incorrect bucket, the bucket that
has the record will eventually send the answer together with
an Image Adjustment Message (IAM) that updates the image
of the client.

C. Bucket File State

Each bucket maintains a single value, called its level j, in
order to reroute misdirected requests from clients. The bucket
level counts the number of times a bucket has been split,
starting with the level of the bucket from which it has split.
As we will see, this implies that j = i or j = i+1. (Recall that
i is the file level).

If a bucket receives a request from a client for a record with
key key, it executes the algorithm in Figure 1 to determine
whether the bucket itself should have the record or whether
the request should be forwarded to another bucket [7]. In this
algoritm, self.j is the level of the bucket and h is the hash
function taking its level as the first parameter. The bucket
address is a.

D. Client Image Adjustment

A client maintains a vew of the file state (i′,n′). If the client
makes an address mistake and the requested record is found
at bucket a, then bucket a sends an IAM with its level and
address. The client executes the file state image adjustment
algorithm given in Figure 2.

Knowing about the existence of a bucket does not imply
knowing how to send a request to it. The original work
on LH∗ assumes that clients use a mechanism like DNS to
resolve bucket numbers to IP addresses. Our variants of LH∗
actually allow servers to include the information in their Image
Adjustment Messages (IAM) to clients. Unfortunately, space
reasons prevent us from presenting them. These mechanisms
are also important to avoid a problem in LH∗RS where a server
failure and bucket reconstruction allows a bucket to reappear
at a different location.
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def stateUpdate(self):
self.split = self.split + 1
if self.split >= 2**self.level:

self.split = 0
self.level = self.level + 1

Fig. 3: The global file state update after a split represents the
additional bucket.

File State Bucket States j
i = 0,s = 0: B0: 0
i = 1,s = 0: B0: 1, B1: 1
i = 1,s = 1: B0: 2, B1: 1, B2: 2
i = 2,s = 0: B0: 2, B1: 2, B2: 2, B3: 2
i = 2,s = 1: B0: 3, B1: 2, B2: 2, B3: 2, B4: 3
i = 2,s = 2: B0: 3, B1: 3, B2: 2, B3: 2, B4: 3, B5: 3
i = 2,s = 3: B0: 3, B1: 3, B3: 2, B3: 2, B4: 3, B5: 3, B6: 3

Fig. 4: Development of a growing LH* file

def preDecessor(fileState):
if fileState.split == 0:

prevLevel = fileState.level-1
prevSplit = 2**prevLevel-1

else:
prevSplit = fileState.split-1

return prevSplit

Fig. 5: Algorithm to calculate the address of the predecessor,
i.e. the bucket that was split in order to generate the current
bucket.

E. Splitting Buckets

When a bucket overflows, it informs the split coordinator
who causes the bucket pointed to by the split pointer to split.
Let the current file state have level i and split pointer s. The
coordinator creates a bucket 2i + s with level i+1. It applies
the hash function h j+1 (defined by h j+1(x) = x mod 2 j+1) to
all the records in bucket s. Since the keys of these records have
the same value modulo 2 j and are assumed to be uniformly
distributed, about half of the records in bucket s now belong
to bucket 2i +s and are therefore moved there. Afterwards the
global file state is updated according to the algorithm presented
in Figure 3.

The resulting sequence of splits is 0, then 0, 1, then 0, 1,
2, 3, then 0, 1, 2, . . . 7 and so on, running through all bucket
numbers from 0 (included) until 2i−1 where i is the current
level.

F. Merging Buckets

When a buckets underflows and reports this to the split
coordinator, then the coordinator will start a merge operation.
A merge operation always merges the bucket with the largest
bucket number with the bucket from which it was last split.
To be more precise, assume that the current file state has level
i and split pointer s and accordingly N = 2i + s buckets. The
coordinator sends a message to bucket N−1 telling it to merge
with its direct ancestor. We calculate the addres of the direct
ancestor by “rolling back” the file state changes by a split
operation moving the system from N− 1 to N buckets with
Algorithm 4 given in Figure 5.

The critical step in this algorithm treats the case where the
change from N− 1 to N has changed the level. In this case,
the split pointer is now 0 and we need to reset the level and
calculate the previous split pointer.

If buckets have vanished through merging, a client can
wrongly send a request to the corresponding server. In LH∗,
the server just sends an error message to the client who
decrements the split pointer and recalculates the address.
Under many circumstances, an LH∗ file does not shrink in
the long run and the merge operation becomes unnecessary.

G. Example
We illustrate the development of an LH∗ file from one to six

buckets in Figure 4. Assume a client with an out-of-date file
state of i = 0 and s = 0 that wants to retrieve record with ID c =
101000101b in the last state. The client uses the hash function
h0 which always returns 0 and accordingly sends the request
to Bucket 0. There, the bucket checks the request using the
algorithm in Figure 1. Since the bucket has j = 3, it applies h3
to obtain a′= 101b = 5. Accordingly, it calculates a′′= h2(c) =
1 and returns 1. Therefore, the request is send to Bucket 1.
That bucket has j = 3, sets a′ = 5 and a′′ = 1, but returns
a′ = 5. This is the correct bucket. The bucket sends an Image
Adjustment Message to the client that changes its state to s = 2
and i = 2.

This example illustrates how LH∗ uses local knowledge.
The client only “knew” of Bucket 0. Bucket 0 knew when it
was last split (in order to create Bucket 4, but did not know
whether Bucket 1 was already split in order to generate Bucket
5. Therefore, it only forwarded to Bucket 1. Bucket 1 however
knew about Bucket 5 because it was generated by splitting it.

IV. SURPRESSING FORWARDING IN LH∗
Despite its mathematical elegance, LH∗ can be improved

to limit the number of forwarding messages. Since double
forwards incur an additional network delay and are already
quite rare, we are especially interested in avoiding them. The
key towards this goal is to give more information on the file
state to the buckets that as we recall only maintain the bucket
file state level j. Instead, we use a complete image of the file
state that corresponds to the current number of buckets in the
system. We then let buckets update this information through
messages and not only when buckets are split or merged.

A. LH* Forwarding
A client that only knows Bucket 0 will commit an ad-

dressing error with its first request for a record located in
another bucket. We call this a compulsory forward. As the
client interacts with the system, it receives an IAM with every
addressing error. If the system is stationary (without split or
merge operations), the clients will eventually learn the true file
state. The number of IAM necessary depends on the luck of
the client and the size of the system.

Figure 6 gives the result of a simulation of a system with
one thousand clients and various numbers of buckets. We
simulated a total of one million messages sent by random
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Fig. 6: Number of non-compulsory and double forwards with
1000 clients and a total of 1000000 messages in a stationary
LH* system. The clients were preloaded with knowing only
Bucket 0 (0), Buckets 0 and 1 (1), Buckets 0, 1, and 2 (2) and
Buckets 0, 1, 2, and 3 (3).

clients with random RIDs. At the end of the simulation, the
client image of most of the clients is exact, while some do not
know about the last or the last and second-last bucket. We then
give the number of non-compulsory forwards and the number
of double forwards. We assumed that the clients start out with
a file image of i = 0 and s = 0, corresponding to a system
with only Bucket 0. As we can see, the number of forwards
and double forwards depends very much on the number of
buckets in the system, with a peak if a system bucket number
is a power of two and a minimum right afterwards. If we
have clients that have a different initial state corresponding to
“knowing” the first two, three, or four initial buckets in the
system, the behaviour stays roughly the same, but the peak
moves slightly to the right. The behavior is explained by the
power of the first IAM message, that gives much knowledge
of the file state. As the number of buckets increases, so does
the number of forwards, as it now takes more IAMs in order
to learn the complete state of the system. As the clients are
almost all up to date after a million messages, a second set
of messages would add just a tiny bit to the number of total
non-compulsary forwards, namely when a client request an
operation on a record in the last (or more rarely next-to-last)
bucket, but if these buckets are not included in the view of
the file state that the client has.

We also see that double forwards, while more than ten times
rarer than double forwards, follow roughly the same pattern,
at least for systems with a larger number of buckets. If the
number of buckets is small, there are situations where a double
forward is never necessary.

B. Pushing File States to Servers
In contrast to LH∗RSP2P , we propose to push information

about a changed file state to servers instead of clients. The
rationale is simple: Servers are always active whereas many

def updIm2(self, nrBuckets)
self.i = int(floor(log(2,nrBuckets))
self.n = nrBuckets - 2**self.i

Fig. 7: Modified IAM algorithms for use with buckets that
maintain their own file state image.

clients will become inactive. This is especially the case in a
typical cloud applications. In order to be able to do so, we
need to abandon the spartan amount of file information that
LH∗ stores at the servers (namely only the bucket file state
j) and instead store a complete view that is – as we recall –
equivalent to specifying the number of buckets in the system.
This knowledge is initialized when the bucket is involved in
a split or a merge. At this moment, the view of the file state
that the bucket has is correct. With the first additional split or
merge operation, the information becomes out-of-date and we
need to update it, but in a lazy manner in order to not cause
a message storm in the system when a split has happened.
For the actual functioning in a cloud system, is it important
that LH∗ and our variants function perfectly correctly even if
buckets rely on stale information for the file state.

Definition 1: Given a bucket b, we call Nb the number of
buckets in the LH∗ file when Bucket b was created, split from
or merged with.

Proposition 1: For any Bucket b, Nb ≤ N, where N is the
total number of buckets in the file at any time.

Proof: The file state and the number of buckets only
change with merge and split operations. After each change,
the bucket numbers form a continuous range starting with 0
and ending with N−1.

We prove the statement by induction on the steps in the
file development. At the time when Bucket b was created,
Nb = N = b. If Bucket b vanishes through a merge operation,
then the Proposition is a vacuous statement until the bucket is
created again. This lays the base case. Assume now that the
proposition is true before a split or merge operation changes
the state of the file. A split operation that does not involve
the bucket, only increases N, but not Nb. A split operation
that splits the bucket updates Nb to N. A merge operation
that involves the bucket either removes the bucket, or has it
merge with the last bucket split from it. In this case, Nb = N.
This leaves us with a merge operation that does not touch the
bucket. Since Nb ≤ N before the merge and since the merge
operation does not touch Bucket b, Nb < N. Therefore, Nb ≤N
after N has decremented through the operation.

Based on Proposition 1, a server with Bucket b can safely
update clients by sending Nb to the client. This results in
the modified IAM algorithm presented from Figure 7. This
algorithm calls Nb nrBuckets and uses it to calculate the
file state corresponding to Nb buckets. The file state might
not be exact (because of intervening split operations) but will
never have the client send an request to a non-existing bucket.

C. Algorithm B0: Fast Client Initiation

A new client has only one bucket in the range of its file
state image, Bucket 0. Our first change to LH∗ is B0, in which
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def check(self, key):
a = h(self.level,key)
if a < self.split:

a = h(self.level+1,key)
if self.id == a:

ACCEPT AND PROCESS REQUEST
else:

forward(a,
key,
clientRequest,
self.id,
forward)

Fig. 8: Check in the Update on Double Forward Protocol. The
server receives a message with key key.

every change to the file state is sent directly to Bucket 0. If
Bucket 0 receives an erroneously addressed request, it updates
the client’s file state with the correct image. A new client or a
client lucky enough to make an error involving Bucket 0 will
immediately be updated to the correct file state. However, the
file state can change afterwards, so that the client can still
commit further errors. If the client is quite inactive, the file
state can change so dramatically that a double forward is still
possible.

The reason for treating Bucket 0 differently follows directly
from the design of LH∗. Bucket 0 is the only bucket that is
guaranteed to exist. It is usually colocated with the coordinator
on the same system, so that updating of the bucket state only
involves local messaging. Additionally, as we just observed,
Bucket 0 is the entry point for any new client, and also,
if merges are implemented, for clients that have reached an
inaccessible bucket.

D. Algorithm UDF: Update on Double Forward
A design principle underlying LH∗ and other scalable, dis-

tributed data structures is the avoidance of hot spots and bursts
of activity. The elegance of LH∗ stems from the avoidance
of update messages among servers. However, while updating
servers at each split is against design principles, LH∗ still
has forwarding messages between servers. We propose now
an algorithm that uses server updates in the case of double
forwards to avoid further double forwards. As before, this
algorithm updates client state file images based on the number
of buckets. It also changes the procedure for receiving client
requests at a sender.

A server now stores three pieces of metadata: its iden-
tity (self.id), and its file state image consisting of level
(self.level) and split pointer (self.split).

When a server receives a request from a bucket, it can
directly use the file state to check whether the request needs
to be handled by the bucket or needs to be forwarded. If
the message is forwarded, then the server includes its bucket
number.

When a server receives a forwarded message, it checks
whether the sender of the message is the one that sent the
forwarding message. If this is not the case, then it is a double
forward and the server sends an image adjustment message
to the original server. This image adjustment message just

def receiveClientRequest(self, client, key):
...
self.gossipCount -= 1
if self.gossipCount == 0:

self.gossip()
self.gossipCount = SERVERGOSSIPNUMBER

...

def gossip(self):
if(self.nextBucket < self.bucketNr):

adjust(self.nextBucket, self.nrBuKnown)
nextBucket += 1

Fig. 9: Gossip algorithm to update servers.

sets the file state of the original server to the state of the
receiving sender. Thus, the original server cannot repeat the
same mistake, but has all the information to determine that
the receiving sender is the server where the record in question
should reside. The complete algorithm is given in Figure 8.

E. Gossiping algorithms
Any system that wants to limit forwards to only compulsive

forwards needs to maintain file state at all servers and push
information to clients, whether they commit an addressing
mistake or not. At the same time, the principles of scalable dis-
tributed data structures need to be maintained, which precludes
maintaining a global state. A compromise between these two
incompatible design decisions lies in updating server and client
information in a lazy manner.

We introduce two simple gossiping mechanism, one for
updating bucket servers, the other one for updating clients. In
contrast to the usual sense of the word, in our scheme gossip
messages are not randomly triggered. Each bucket maintains a
gossip counter called gossipCount, Figure 9, and a value
nextBucket that is the next bucket to be updated. Whenever
the bucket is created or whenever the bucket is split, and
thereby “knows” that the total number of buckets in the scheme
has increased, it sets these numbers to their initial values. The
value of nextBucket becomes 0 and the gossipCount
is set to a system parameter representing the eagerness with
which information is shared. At each processing of a client
request, the bucket decrements the value of gossipCount
until it reaches 0. In this case, the value is restored to the
initial value and a message is sent to the bucket indicated by
nextBucket with the information of the number of buckets
in the system. The bucket that receives the message (i.e.
Bucket nextBucket updates its image of the file state to
reflect the new information, but only if it does not have better
one. In the case of a file that only grows, the decision of which
information is better is simple: The one about more buckets
is newer. In the case of a file that allows bucket merges, the
file state image needs to also contain a time stamp by the split
coordinator.

Our second gossiping mechanism is for client updates. A
client maintains a similar counter. The counter is decremented
whenever the client sends a request to a bucket. If the counter
reaches 0, then the client sets a flag in the message requesting
a file image adjustment from the responding bucket. In contrast
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to normal IAMs, there is no guarantee that the client receives
new information.

V. EXPERIMENTAL EVALUATION

For the experimental evaluation, we focus only on growing
LH∗ files. Shrinking files are not only rare, but also ideosyn-
cratic and modelling them requires making assumptions that
are hard to justify.

Our first scenario is one where the file is stationary and
clients make a large number of request. We already applied this
scenario in Figure 6. If we apply algorithm B0 in this scenario
and the clients all start out fresh, then there will be only
compulsory forwards (one per client) and no double forwards
at all. This is of course different if clients have different initial
states, since their file state image only gets updated to the
correct state if they erroneously address Bucket 0 or if they
obtain the correct state by addressing records in the last bucket
created.

Our second scenario has an LH* file that is growing at
different speeds. We simulate 1000 clients and calculate for-
warding and double forwarding operations. In the low growth
scenario, a client makes on the average one request before a
split occurs. In the moderate growth scenario, a client makes
on average 0.05 requests before the file grows. Finally, in
the fast growth scenario, a client makes on average 0.005
operations before the file increases by an additional bucket.

As a comparison point, we evaluate first LH∗RSP2P . LH∗RSP2P

uses a client ID and then uses LH∗ addressing to assign each
client to a tutor, which is a server that pushes its bucket file
state to its assigned clients whenever it changes. A client can
get a new tutor when its previous tutor splits or if the current
tutor is merged with another bucket. That server than becomes
the new tutor. It can be shown that LH∗RSP2P has no double
forwards because each client is updated by its tutor once as
the file grows from 2k−1 to 2k+1 buckets (for any k ∈ N).

We then evaluated the baseline behavior and our less in-
volved adaptations of B0 (fast new client initiation by always
keeping Bucket 0 actualized), and UDF (update servers on
double forwards). We then evaluated two variants of gossiping,
one where servers update another after 100 requests (Gossip
100) and one where servers update another server after 10
service requests and where clients request an update with every
fifth operation that they make (Gossip 10 5).

Our evaluation uses simulation (written in Python). In order
to avoid influences of the starting configuration, we only
report the averages of simulations where we start with k
buckets, k ∈ {20,21, . . .500} and 1000 clients. For the gossip
protocols, the clients have a file state that correctly reflects
the initial configuration, otherwise the client’s view only has
Bucket 0. The total number of buckets created depends on the
growth rate. We observe the effects of 500,000 requests, each
originating from a random client (among the 1000) and with
a random RID.

Our results in Table I show first that single forwards are
a reasonably frequent occurrence in these scenarios, but that
double forwards are rare. Avoiding double forwards is thus

more important for maintaining QoS agreements than for
keeping average access costs down. In our scenarios, the costs
of pushing information to clients in LH∗RSP2P pays off, even in
the fast growth scenario, where there is a considerable amount
of unsolicited update traffic between tutors and their assigned
clients. We discuss this more below, Table III.

Secondly, they show that B0 – fast new client initiation
– has the biggest effect in lowering the rate of single and
double forwards. Only when there is fast growth do active
clients experience a sufficiently dearth of activity that their
image of the file state is so far away from the actual file state
that double forwards appear at all. Indeed, in the moderate
growth scenario, B0 performs (surprisingly to us) better than
the gossipping protocol gossip 1000 that takes time to update
the file state image maintained at B0.

Third, they show that the differences between B0 and UDF
are minute. In fact, even while not identical, their graphs in
Figure 10 overlap. Only the aggressive gossiping algorithms
can do better.

While our numbers for LH∗RSP2P make it attractive, they
do not take into account the overhead caused by pushing
update information to the clients. All clients, whether active or
not, receive one update message from their tutor, the bucket
to which they are assigned. In our scenarios, these gives a
message overhead that makes our other protocols at least
competitive, if not better. In practice, the results will depend on
the difference between activity levels between clients, which in
turn depends on the nature of the application and does not lend
itself to general rules. These numbers can be greatly higher if
we have a substantial amount of churn, since each new client
needs to find its tutor to get updated. We give the numbers
for our simplified scenario in Table III. For example, in the
fast growth scenario, we have 8.87 times that a tutor updates
its pupil, which amounts to a tutor-to-pupil message overhead
of 1.78% per client request. Since we assume no churn, true
numbers should be higher.

We then investigated various parameter choices for the fast-
growth environment. Our results are shown in Table II. The
gossiping protocols all update Bucket 0 immediately with
every split. As we can see clearly, the rate at which client
update their file image has a much higher impact than the
rate at which servers update each other. The explanation lies
in the resilience of the original LH∗ protocol. The process
of bucket splits maintains servers reasonably well informed
about the number of buckets in the file. Just based on the
bucket level, the server knows the powers of two limiting
the total number of buckets in the file. While the speed of
server updates has a small, but predictable effect on the total
number of messages that need to be forwarded, the number of
double forwards sometimes ends in a statistically dead head
or can even ever so slightly increase with higher growth rates.
This is a perverse effect of the efficiency of the system, since
less forwarding mistakes mean less load at lower-numbered
buckets and therefore fewer updates from there. We observed
it when studying the raw data, not the cumulative data given
in Table II. It only happens when we start the simulation with
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TABLE I: Percentage of client requests forwarded once and twice
.

LH∗RSP2P Baseline B0 UDF Gossip 100 Gossip 10 5
Low Growth

Single Forwards 4.810% 5.308% 4.872% 4.872% 4.872% 4.413%
Double Forwards 0.0000% 0.0493% 0.0000% 0.0000% 0.0000% 0.0000%

Moderate Growth
Single Forwards 6.930 % 8.257% 8.045% 8.044% 8.044% 7.323 %
Double Forwards 0.0000% 0.051226% 0.001169% 0.00095% 0.00095% 0.000605%

Fast Growth
Single Forwards 7.305% 8.918% 8.805% 8.802 % 8.802 % 8.047%
Double Forwards 0.0000% 0.064443% 0.015172% 0.014428% 0.014428% 0.011058%

TABLE II: Percentage of client requests forwarded once and twice for gossiping protocols

Protocol Single Forwards Double Forwards
gossip 2 (server), 2 (client) 7.195755% 0.007473%
gossip 5 (server), 2 (client) 7.200378% 0.007582%
gossip 10 (server), 2 (client) 7.203034% 0.007687%
gossip 100 (server), 2 (client) 7.205120% 0.007976%
gossip 1000 (server), 2 (client) 7.205322% 0.007986%
gossip 2 (server), 5 (client) 8.043643% 0.010941%
gossip 5 (server), 5 (client) 8.044891% 0.011090%
gossip 10 (server), 5 (client) 8.046876% 0.011058%
gossip 100 (server), 5 (client) 8.048471% 0.011275%
gossip 1000 (server), 5 (client) 8.048615% 0.011275%
gossip 2 (server), 10 (client) 8.404569% 0.012958%
gossip 5 (server), 10 (client) 8.404756% 0.012913%
gossip 10 (server), 10 (client) 8.406508% 0.012866%
gossip 100 (server), 10 (client) 8.408157% 0.013090%
gossip 1000 (server), 10 (client) 8.408270% 0.013079%

TABLE III: Client update messages in LH∗RSP2P .

Scenario Updates per Client Overhead per client request
Low Growth 1.830420 0.366084%
Moderate Growth 5.599402 1.119880%
Fast Growth 8.876860 1.775372%

a system with already more than 300 servers and clients that
have file state views that are exact.

As we can see from Figure 10, the number of forwards
becomes slightly lower as the LH∗ files become larger. This
is because a client with slightly inaccurate image will not be
as likely to make an addressing mistake. We can also see how
statistically stable the ranking of the various protocols are, but
the small but negligible contribution of UDF over B0 is not
visible.

As opposed to spreading information among servers, pulling
information from servers to clients has a very noticeable
effect both on lowering the number of single forwards (an
improvement by 24%) and especially of double forwards, with
an improvement of over 800%.

In conclusion, we observe that for our scenarios, pulling in-
formation via piggy-backing is a mechanism that is successful
in limiting the number of double forwards and single forwards
messages. Depending on the growth of the file, it can slightly
outperform LH∗RSP2P .

VI. CONCLUSIONS

We have here presented solutions in preventing double
forwards in LH∗, a fundamental problem for allowing tight
quality of service degrees. Our solutions show that a single

change (represented in our algorithm B0) that operates on the
way clients are initialized, suffices to remove all or almost all
double forward operations. The QoS promise can then be set
to reflect the latency of three messages among participants.

Further improvement requires either reasonably aggressive
gossiping or pushing information to client, which is done in
LH∗RSP2P . The latter causes an important overhead.

A compromise solution would be to have an initialization
service for new clients and use a self-adjusting time-out
for clients that have made no access in order to revisit the
initialization server. This solution splits the double functions
of Bucket 0 into being a normal bucket and being the preferred
bucket for important updates to a client’s file state.

Future work will seek to overcome the problem of wan-
dering buckets in LH∗RS , the high availability version of
LH∗. These buckets are caused by server failures where the
buckets on the failed server(s) are reconstructed elsewhere.
How to bring the information about the new locations to the
clients is the problem to be solved. This work will also try
to make the distribution of bucket locations to clients in LH∗
more efficient. In this case, which should prove the standard
one for LH∗ deployment, gossiping protocols become much
more attractive. In LH∗RSP2P , a client only receives an update
when its tutor has split. Thus, the client will discover that
a bucket has wandered usually through error. The standard
failure mechanism in LH∗RS handles this case well, but it
efficiency could be improved.
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Fig. 10: Non-compulsory single forwarding messages in the low, moderate, and fast growth scenario depending on the starting
size (in buckets) of the LH∗ file.
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