UNIVERSITY OF CALIFORNIA, SAN DIEGO

Reliability and Performance

of Disk Arrays

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Computer Science

Thomas Johannes Emil Schwarz

Committee in charge:

Professor Walther A. Burkhard, Chairman
Professor Ting Ting Lin
Professor Christos H. Papadimitriou

Professor Joseph C. Pasquale
Professor Jack K. Wolf

1994

Copyright
Thomas Johannes Fmil Schwarz, 1994

All rights reserved.

The dissertation of Thomas Schwarz is approved, and it is

acceptable in quality and form for publication on microfilm:

Chair

University of California, San Diego

1994

iii

TABLE OF CONTENTS

Signature Page iii
Table of Contents iv
List of Figures e vii
List of Tables xii
Vita, Publications, and Fields of Study b as
Abstract L e xvii
Introduction L 1
Modeling Assumptions and Tools 3
1. Terminology e 3
2. Markov Models 6
1. Overview o o e e e 6
2. Definition of Markov Chains 7
3. Discrete Markov Chains Lo oo 8
4. Continuous Markov Chains 10
5. Numerical Aspects. o L 12
6. An Exampleo 14
3. Disk Array Components and Failure Rates 16
Level 5 RAIDs o o o 18
1o OVverview o o e e e 18
2. Level 5 RAID Organizations and Reliability Results 20
1. Declustering Level 5 RAIDs 21
2. Level 5 Raids with Hot Stand-By Disks 21
3. Comparison of RAID MTTDL for RAIDS with Different Storage Capacities 22
3. Overview of Level 5 RAID Organizations 23
1. Classic Level 5 RAIDo o o 23
2. Level 5 RAID with Complete Address Translation 23
3. Level 5 RAID with Almost Complete Disk Address Translation (ACATS) 24
4. Classic Level 5 RAID with Distributed Disk Sparing 25

5. Level 5 RAID with Distributed Disk Sparing and Almost Complete Load
Balancingo 25
6. Classic Level 5 RAID with a String of Spares 25

7. Level 5 RAID with a Distributed String of Spares and Almost Complete
Load Balancing 26
8. Classic Level 5 RAID with a Distributed Spare String 26
9. Distributed String Sparing with Almost Complete Load Balancing . 26
4. Modeling Reliability 29
1. Classic Level 5 RAIDo o o 29

iv

5.

Level 5 RAID with Complete Address Translation
The Level 5 RAID with Almost Complete Load Balancing
Classic Level 5 RAID with Distributed Disk Sparing
The Level 5 RAID with Distributed Sparing and Almost Complete Load
Balancingo
Classic Level 5 RAID with a String of Spares
RAID with a String of Spares and Almost Complete Load Balancing

Classical Level 5 RAID with a Distributed Spare String
9. Distributed String Sparing with Almost Complete Load Balancing
Influence of Repair Time Distribution

O W N

o0 ~1 S

MDS Based RAIDs o o e e e

1.

w

MDS Codes e
1. Holographic Information Dispersal
2. Linear MDS Codes e
3. A Coding Example
Balanced Information Dispersal Algorithm
MDS RAIDs o e
Reliability of some MDS RAID Organizations
1. MDS Extension of the Classic RAID
2. MDS RAID with Almost Complete Address Translation
3. MDS RAIDs with Safe Distributed Sparing
Reconfiguration in MDS RAIDs
Modeling in Detail
1. MDS Extension of the Classic RAID
2. MDS Extension of the Level 5 RAID with Almost Complete Address

Translation L L
3. MDS RAID with Almost Complete Address Translation and Safe Dis-

tributed Sparing

Two Dimensional RAID Schemes

1.
2.

4.
5.

Disk Failure Reliability of the 2 Dimensional RAID
Stringing the Two-Dimensional RAID
1. Figures of Merits for Stringing Schemes
2. Maximum Tolerance against String Failures
3. Tolerance against Single Disk and String Failure
4. Tolerance against Two String Failures
Disk Failure Patterns
1. Definition L
2. Enumeration of MDFP and Reliability Bounds
A Stringing Criterion for Tolerance against One Disk and One String Failure
Criterion for Tolerance against Two String Failures
1. Schemes with Maximum Number of Disks in a String
2. Schemes with a Smaller Number of Disks in a String
3. Markov Models for the Reliability of the Stringing Schemes offering Two

String Failure Resistance L o oL

44
51
65
75
87
92

93
93
93
96
97
103
104
104
105
106
106
106
107
107

109

110

106
107
110
110
111
111
111
112
112
112
117
119
120
120

6 Addressing in Detail L 128

1. Address Translation Schemes L o 0oL 128
2. Pseudo-Random Permutations, 129
3. Evaluation of Pseudo-Random Number Based Schemes 131
7 Performance Modeling of Write Synchronization Schemes 134
8 Performance with Strong Synchronization 136
1. The Model o e 136
2. Results oo 139
3. A Queueing Network Approach 140
1. Queuing Networks L 140
2. Notation e 140
3. A Queueing Network Approximation for One Check Disk 141
4. The Queuning Network Approach in the General Case 142
5. An Exampleo L 144
4. A General Lower Bound for Synchronization Schemes 145
5. Performance with Synchronized Disks 147
1. Results o o 147
2. Derivation 148
3. An Exampleo 148
6. Performance of Level 4 RAIDs with Strong Write Synchronization 149
7. Synchronization Time for Identical Distributions 150
8. Synchronization Time for 2 Classes of Distribution 151
9. Simulation Results 153
9 Performance under Write-Restart Synchronization 155
1. Derivation of Results L o o 155
10 Performance Without Write Synchronization 159
11 Adjustment for the Presence of Failed Components 161
1. Strategies for RAIDs with Spare Space 161
2. RAIDs with Almost Complete Address Translation 163
1. NoSpares o i i 164
2. Reconfiguration on Check oL 167
3. UseofaSpare Disk L 176
4. Naive Distributed Sparing oo 191
5. Safe Distributed Sparing oL 193
6. Distributed Sparing of a String oL 198
7. Comparison of an MDS Based RAID with a Level 5 RAID with Distributed
SParingo 205
3. Classic Level 5 RAIDs 0 206
1. No Spares o 0 i i 206
2. Naive Distributed Sparing Lo 207
3. Safe Distributed Sparing oL 209
4. Distributed Sparing of a String L oL 211

vi

4. The Two-Dimensional RAID o . 211

1. No Spares o 0 i i e 214
2. Reconfiguration on one Dedicated Check 215
3. UseofaSpare Disk 216
4. Naive Distributed Sparing oo o 218
5. Safe Distributed Sparing oL 218
6. Distributed Sparing of a String oL 221
5. A Metric for Reconstruction Speed Lo oL 221
6. Synthesis L e 226
12 Application of MDS Codes for Data Bases 214
1. Storage Scheme 214
2. Read and Write Protocol o oo 216
3. Performance 217
4. Use for Archival Storage L 217
5. Signature Schemes L 218
1. Linear Schemes 218
2. Smart Version Numberso oo 219
A Glossary of Terms o0 222
Bibliography 224
LIST OF FIGURES
2.1 The Bath-Tub Probability Distribution for Component Failure 7
2.2 An Simple Example for a Markov Chain 14
3.1 Disk Array Ensemble with Ten Strings and Five Reliability Groups 20
3.2 Markov Model for the Classic Raid Organization with 5 Reliability Groups
and 10 Strings. L 29
3.3 Sensitivity Analysis for the Classic Level 5 RAID with soft strings: MTTDL
Dependency on the Repair Time (left) and on Disk MTTF (right). 30

3.4 Markov Model for the Level 5 RAID with Complete Disk Address Translation 31
3.5 Sensitivity Analysis for the CATS RAID with soft strings: MTTDL Depen-

dency on the Repair Time (left) and on Disk MTTF (right). 33
3.6 Markov Model for the Level 5 RAID with ACATS 34
3.7 A Two By Four Disk Array: (a) Fault-Free Data Lay-Out (b) Data Lay-Out

After Disk Failureo o oo o oo 35

3.8 Markov Model for the Classic Raid Organization with NDS: 1 Spare, 5
Reliability Groups and 10 Strings. Not shown are transitions from repair
and essential component failure. Note, that state 5 and the string failure

state 6 are not identical. L L Lo 0oL 37
3.9 Impact of Reconstruction Time on the MTTDL for the Classic RAID with

NDS (10 strings, 5 reliability groups, 1 spare) 40
3.10 Markov Model for the Classic Raid Organization with NDS: 2 Spares, 5

Reliability Groups and 10 Strings. 41

vii

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22
3.23

3.24

3.25

3.26

3.27

3.28

4.1
4.2
4.3
4.4

4.5

Impact of Reconstruction Time on the MTTDL for the Classic RAID with
NDS (10 strings, 5 reliability groups, 2 spares)(Super Hardened Strings right.) 41
Markov Model for the Classic Raid Organization with SDS: 1 Spare, 5 Re-

liability Groups and 10 Strings Lo 42
Impact of Reconstruction Time, Repair Time and Disk MTTF on the MTTDL

for the Classic RAID with SDS (10 strings, 5 reliability groups, 1 spare) . 43
A Two By Three Disk Array: (a) Fault-Free Data Lay-Out, (b) Data Lay-

Out after Disk Failure o oo 44

Markov Chains for Distributed Sparing with Almost Complete Load Bal-
ancing with Parameters: 1 Spare, m = 5, » = 10 and 1 Spare, m = 10,

n=11. . . e 45
Impact of Reconstruction Time, Repair Time and Disk MTTF on the ACATS
RAID with NDS (1 Spare) 48
Markov Chain for Safe Distributed Sparing with Almost Complete Load
Balancing with 1 Spare. L L 49
Impact of Reconstruction Time, Repair Time and Disk MTTF on the ACATS
RAID with SDS (1 Spare) 50
Impact of Reconstruction Time, Repair Time, Disk MTTF on the MTTDL
of the RAID with ACATS and Distributed String Sparing. 64
Impact of Reconstruction Time, Repair Time, Disk MTTF on the MTTDL
of the RAID with ACATS and a String of one Spare. 73
Impact of Reconstruction Time, Repair Time, Disk MTTF on the MTTDL
of the RAID with ACATS and a String of two Spares. 74
Partitioning Example L oo 75
A Three by Four Disk Array: (a) Normal Data Lay-Out (b) Data Lay-Out
after 3 Disk Failures o 76

Data loss probability pg(z) for the failure of two additional disks in a par-
tition with z reliability group for the two example arrays: (a) The 5 x 11

array. (b) The 10 x 12 array. 78
A Two by Four Disk Array: (a) Fault-Free Data Lay-Out (b) Data Lay-Out
after 2 Disk Failures oo 82
Impact of Reconstruction Time, Repair Time, Disk MTTF on the MTTDL
of the Classic RAID with Distributed String Sparing. 86
Impact of Reconstruction Time, Repair Time, Disk MTTF on the MTTDL
of the RAID with ACATS and Distributed String Sparing. 91

Relative Difference of MTTDL obtained from the Deterministic Repair Time
Distribution (solid line) and Uniform Repair Time Distribution (dotted line)

compared with MTTDL obtained using the exponential distribution. . . . 92
General IDA Scheme oL L 94
Wastefree IDA as an MDS code.o oo oo 95
Impact of Repair Time and Disk MTTF on the MTTDL of the MDS exten-
sion of the Classic RAID 108
Markov Model for the MDS Extension of the Level 5 RAID with Almost
Complete Address Translation 109
Impact of Repair Time and Disk MTTF on the MTTDL of the MDS RAID
with ACAT . . . o e 110

viii

4.6
4.7

5.1
5.2

5.3
5.4
5.5
5.6

5.7
5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

6.1

6.2

6.3

6.4

Markov Model for the MDS RAID with ACATS and SDS 110
Impact of Reconstruction Time, Repair Time and Disk MTTF on the MTTDL

of the MDS RAID with ACAT, 112
A Two Dimensional RAID Scheme 107
Markov Model for the Disk Failure Reliability of the Two Dimensional RAID
with 120 Disks. 108
Minimal Disk Failure Patterns: Open Triangle, Closed Quadrangle, Open
Quadrangle, Open Pentagon, Closed Hexagon, Open Hexagon 110
Two 5 DFPs Containing Two Triangles and a Quadrangle. 112
Calculation of 6 MDFP0 oo oo 114
6 DFP with Two Disjoint Triangles and with One Quadrangle and One
Triangle L 115
6 DFP consisting of two quadrangles 116
Walt Burkhard’s Stringing Scheme for a Two-Dimensional RAID Tolerating
Failure of Two Strings. 119

A stringing scheme for the two-dimensional RAID scheme with 36 disks
capacity, that tolerates failure of two strings and consists of 12 strings with
4diskseach. L 120
A stringing scheme for the two-dimensional RAID scheme with 64 disks
capacity, that tolerates failure of two strings and consists of 16 strings with
Sdiskseach. L 124
A stringing scheme for the two-dimensional RAID scheme with 100 disks
capacity, that tolerates failure of two strings and consists of 20 strings with

6 diskseach. L 124
The Markov Model for the two-dimensional RAID with 20 strings with 6
Disks each. We only show transitions with non-negligible transitions. . . . 124
Impact of Repair Time and Disk MTTF on the Two Dimensional RAID
with 48 Disks and 12 Strings L oo 125
Impact of Reconstruction Time, Repair Time and Disk MTTF on the Two
Dimensional RAID with 48 Disks and 12 Strings with SDS (1 Disk) 126
Impact of Repair Time and Disk MTTF on the Two Dimensional RAID
with 120 Disks and 20 Strings 127
Impact of Reconstruction Time, Repair Time and Disk MTTF on the Two
Dimensional RAID with 120 Disks and 20 Strings with SDS (1 Disk) . . . 128

Two Address Translation Schemes: RAID 5 (left) and Almost Complete
Address Translation. L Lo 129
Knuth’s Enumeration Algorithm in Pseudo-Code generates Permutation p
from integer f. The permutation is an integer array whose indices range
from Lton. e 132
Frequency of Physical Disks being in the same Reliability Group as Disk
[0][0]. The underlying RAID consists of 11 strings with 5 disks. The scheme
uses one random number generator to generate the disk in string permutation.132
Frequency of Physical Disks being in the same Reliability Group as Disk
[0][0]. The underlying RAID consists of 11 strings with 5 disks. We use now
a different permutation of strings. oL 133

X

6.5

8.1

8.2

8.3

8.4

8.5

8.6

9.1

10.1

11.1

11.2

11.3

11.4

11.5

11.6

11.7

Frequency of Physical Disks being in the same Reliability Group as Disk
[0][0]. The underlying RAID consists of 11 strings with 5 disks. This scheme
uses one random number generator to generate all disk in string permutation
at the same time.

Timing Diagram for an Update Operation in the Strong Synchronization
Scheme
Timing Diagram for an Update Operation in the Strong Synchronization
Scheme L
Service Time, Response Time and Utilization for Strong Write Synchroniza-
tion (1 Check and Writes Only Load)
Service Time, Response Time and Utilization for Strong Write Synchroniza-
tion (1 Check and a Writes Only Load)
Response Time under the Strong Synchronization Scheme: Write Load only,
Write Quorum of 3. Lo
Response Time under the Strong Synchronization Scheme: Write Load only,
Write Quorum of 2. oL L L

Response Times, Busy Times and Utilization (per mille) for the Write
Restart Scheme with Two Disks

Performance with No Write Synchronization

Reconfiguration effects on the Utilization of the Disks outside the String
with the Failed Disk for Reconfiguration on Check at a one-dimensional
RAID. We use opportunistic reconstruction only.
Reconfiguration effects on the Utilization of the Disks outside the String
with the Failed Disk for Reconfiguration on Check at a one-dimensional
RAID. The utilization of the disks outside the string with the failed disk is
kept at 80% (top) and 60%(bottom).
Reconfiguration effects on the Utilization of the Disks outside the String
with the Failed Disk for Reconfiguration on Check at a MDS based RAID.
We use only opportunistic reconstruction.00
Reconfiguration effects on the Utilization of the Disks outside the String
with the Failed Disk for Reconfiguration on Check at a MDS based RAID.
The reconfiguration proceeds at constant disk utilization of 80% (top) and
60% (bottom) in all strings but the one with the failed disk.
Reconfiguration Effects on the Utilization of the Disks after a String Failure
in the One-Dimensional RAID Organization. We use only opportunistic
reconstruction. Lo
Reconfiguration Effects on the Utilization of the Disks after a String Failure
in the One-Dimensional RAID Organization. We use constant disk utiliza-
tion at 80% (top) and 60% (bottom).)
Reconfiguration effects on the Utilization of the Disks outside the String
with the Failed Disk for Reconfiguration on Check in a MDS-based RAID.
We use only opportunistic reconstruction. (The reconstruction load is given
in requests per sec/100.)

134

137

138

143

145

154

154

157

161

170

171

173

174

176

177

11.8 Reconfiguration effects on the Utilization of the Disks outside the String

with the Failed Disk for Reconfiguration on Check in an MDS RAID. We

fix disk utilization at 80% (top) and at 60%. 179
11.9 Disk Utilization with Opportunistic Load: Shown are protion of reconstruc-

tion data on spare, utilization of a disk outside the string with the failed

disk, utilization of the spare disk (left) and reconstruction load (right). . . 184
11.10 Utilization with Constant Reconstruction Load when Reconstructing on

Spare in a One-Dimensional Disk Array: Shown are portion of reconstructed

data on spare, utilization at a disk outside the string with the failed disk,

utilization of the spare disk (left), and reconstruction load (right). 185
11.11 Utilization with Constant Spare Utilization when Reconstructing on Spare

in a One-Dimensional Disk Array. Shown are portion of reconstructed data

on spare, utilization at a disk outside the string with the failed disk, utiliza-

tion of the spare disk (left), and reconstruction load (right). 186
11.12 Utilization with Opportunistic Load at an MDS based RAID: Shown are

Portion of reconstructed data on spare, utilization at a disk outside the

string with the failed disk, utilization of the spare disk, and reconstruction

load in requests per sec/100.o 188
11.13 Utilization with Constant Reconstruction Load at an MDS based RAID

while Reconstructing on Spare. L 0oL 190
11.14 Utilization with Constant Spare Utilization at an MDS based RAID. Re-

construction load is given in requests per millisecond. 190
11.15 Utilization with Opportunistic Reconstruction only in the NDS Scheme. . 191
11.16 Effects of Constant Utilization in the NDS Scheme. 194

11.17 Opportunistic Reconstruction in the NDS Scheme for an MDS based RAID. 195
11.18 Constant Peak Utilization in the NDS Scheme for an MDS based RAID.(Reconstruction

Load is given in requests per 10 ms.) 195
11.19 Opportunistic Reconstruction in the SDS Scheme for an one dimensional
RAID. . . 198
11.20 Constant Peak Utilization in the SDS Scheme for an one dimensional RAID.
(Reconstruction Load is given in requests per 10 ms.) 199
11.21 Opportunistic Reconstruction in the SDS Scheme for an MDS code based
RAID. (Reconstruction Load is given in requests per 10 ms.) 200
11.22 Opportunistic Reconstruction in the Distributed Sparing Scheme for a one-
dimensional RAID after String Failure. 203
11.23 Reconstruction in the Distributed Sparing Scheme for a one-dimensional
RAID with a Target Disk Utilization of 80% after String Failure. 203
11.24 Opportunistic Reconstruction in the Distributed Sparing Scheme for an
MDS code based RAID. L 204
11.25 Reconstruction in the Distributed Sparing Scheme for an MDS code based
RAID with a Target Disk Utilization of 80%. 204

11.26 Disk Utilization for a Level 5 RAID with Distributed Spare (solid line) and
an MDS RAID (dotted line) in the Disk Failure Case (left) and the String

Failure Case (right).. o o 206
11.27 Disk Utilization in the NDS scheme for a Classic Level 5 RAID. We use
opportunistic reconstruction and constant utilization. 208

xi

11.28

11.29

11.30

11.31

11.32

11.33

11.34

12.1

12.2

2.1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

Utilization at a Classic MDS RAID using NDS. We show opportunistic
reconstruction only and constant utilization.
Effects of SDS on the Classic One-Dimensional RAID: Opportunistic Re-
construction and Constant Peak Utilization.
Effects of SDS on the Classic MDS based RAID: Opportunistic Reconstruc-
tion and Constant Peak Utilization.
Utilization at the Two Dimensional RAID after a Disk Failure using Re-
construction on Spare Disk. We use opportunistic reconstruction (top) and
constant spare disk utilization (bottom).
Utilization at the Two Dimensional RAID after a Disk Failure under NDS
with Opportunistic Reconstruction
Utilization at the Two Dimensional RAID after a Disk Failure under SDS.
We use opportunistic reconstruction (left) and constant disk utilization
(right). (Reconstruction load is given in tens of requests per millisecond.) .
Utilization at the Two Dimensional RAID after a Disk Failure under SDS.
We use opportunistic reconstruction (left) and constant disk utilization
(right). (Reconstruction load is given in tens of requests per millisecond.) .

Data inavailability in dependence on site inavailability probability for the
MDS storage scheme with 3 primary and 2 secondary pages per block (solid
line), a triple (dotted) and a double replicated database.
The Storage Scheme with m = 3 and n = 5 before and after Loss of a Site.

LIST OF TABLES

Event Rates e

MTTDL Values for Level 5 RAID Organizations
Single Disk Equivalent MTTDL Values
States of the Markov Model for the Classic Level 5 RAID with a String of
T Spare L e
State Transitions in the Markov Model for the Classic Level 5 RAID with
a String of 1 Spare: Part I oL
State Transitions in the Markov Model for the Classic Level 5 RAID with
a String of 1 Spare: Part IT.
States of the Markov Model for the Classic Level 5 RAID with a String of
2 Spares: Part I
States of the Markov Model for the Classic Level 5 RAID with a String of
2 Spares: Part IT o
State Transitions in the Markov Model for the Classic Level 5 RAID with
a String of 2 Spares: Part I. oL
State Transitions in the Markov Model for the Classic Level 5 RAID with
a String of 2 Spares: Part IT,
State Transitions in the Markov Model for the Classic Level 5 RAID with
a String of 2 Spares: Part IIT.

xii

210

212

213

219

220

222

223

215
216

17

27
28

54

55

56

57

58

59

60

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

4.1
4.2

5.1

5.2

5.3

5.4

5.5

State Transitions in the Markov Model for the Classic Level 5 RAID with

a String of 2 Spares: Part IVo oL 62
State Transitions in the Markov Model for the Classic Level 5 RAID with
a String of 2 Spare: Part V.. oL 63
State Transitions in the Markov Model for the Classic Level 5 RAID with
a String of 2 Spare: Part VI L oo oL 64
States of the Markov Model for the Level 5 RAID with a String of 2 Spares
and Almost Complete Load Balancing 67
States of the Markov Model for the Level 5 RAID with a String of 2 Spares
and Almost Complete Load Balancing 68

Failure Patterns of the Markov Model for the Level 5 RAid with a String of
2 Spares and Almost Complete Load Balancing, that are not realized due

to Reassignment of Spares. oL 68
State Transitions in the Markov Model for the Classic Level 5 RAID with
a String of 1 Spare: Part I oL 69
State Transitions in the Markov Model for the Classic Level 5 RAID with
a String of 1 Spare: Part IT. 70
State Transitions in the Markov Model for the Classic Level 5 RAID with
a String of 1 Spare: Part IIT 71
State Transitions in the Markov Model for the Classic Level 5 RAID with
a String of 1 Spare: Part IV oL 72

Data Loss Probability for two disk arrays, (a) 5 reliability groups with 11
disks each and a total storage capacity equal to that of 45 individual disks
and (b) 10 reliability groups with 12 disks each and a total storage capacity
corresponding to that of 100 individual disks each. 81
Non-zero Probabilities, that in a partition with originally z; reliability
groups and [; additional disk failures, the data survives string failure and
that in the resulting state k, disk failures outside the failed string remain. 82
Transition Probabilities for the 5 x 11 classic RAID with Distributed Sparing. 85

Finite Field Operations for the Field {0,1,2,3} 97
MTTDL Values 105

Data Loss Probabilities for the Static (no address translation) and the Bal-
anced RAID (full address tranlation) for two RAID Sizes with Capacity 36
Disks and 100 Disks.) o 108
Reliability against Disk Failure of the Two-Dimensional RAID (with 36 and
100 disks capability) compared with 2 MDS RAIDs (with Dimensions 6 * 8
and 10*12). The survival rate is given in years. 109
Data loss Probabilities of Disk Failures for the RAID with (a) 12 Strings
with 4 Disks each, (b) 16 Strings with 5 Disks each and (c) with 20 Strings

with 6 Diskseach 122
Data Loss Probabilities for the three RAIDs with a String Failure and ad-
ditional Disk Failures. (The third column is a Lower Bound.) 123

Reliability of the Three Two-Dimensional RAID schemes developed in this
Section. Every other row gives the reliability for the RAID with SDS for
one Disk. L 123

xiii

8.1

8.2

11.1
11.2

Notation for the Queuing Network Analysis of the Strong Synchronization
Scheme L
Lower Bounds for External Service Times in a System with a Large Number
of Devices. Each requests requires synchronized service at two devices. The
internal service time is constant 1. For loads of 3/4 or more, the system is
shown to be unstable. oo Lo oo

List of Symbols for Chapter 11.
Reconstruction Times for RAID Organizations with NDS, SDS and String
Distributed Sparing

xiv

141

Dec. 15, 1955

1974-80

1980

1980-84

1984

1984-85

1985-87

1987-88

1988-91

1991-93
1993-94

1993-94

Publications:

VITA

Born, Bonn, Federal Republic of Germany

Studies of Mathematics at Westphalische Wilhelms-Universitat
Miinster

Diplom Mathematiker (Diploma in Mathematics), Westphélische
Wilhelms- Universitat Miinster with a Minor in Business Ad-
ministration. The thesis title was: On Maximal Involution
Invariant Orders in Simple Algebras over the Quotient Field

of a Dedekind Ring.

Scientific Employee at Fernuniversitat Hagen

Doctorate in Mathematics, Fernuniversitit Hagen. The the-
sis title was Simple Jordan Triple Systems. The thesis advisor
was Prof. Holger Petersson.

Visiting Assistant Professor of Mathematics at Western Wash-
ington University, Bellingham, Washington

Assistant Professor of Mathematics at Ohio State University,
Mansfield and Columbus, Ohio

Assistant Professor of Mathematics at California State Uni-
versity, Bakersfield, California

Graduate Student in Computer Science, University of Cali-
fornia at San Diego

Jesuit Novitiate

Visiting Assistant Professor of Computer Science (part-time),
Gonzaga University, Spokane, Washington

Graduate Student in Computer Science, University of Cali-
fornia at San Diego

1. Automorphism Groups of Simple Jordan Pairs,

Algebras, Groups and Geometries 1 (1984), 490-509

2. Special Simple Jordan Triple Systems

Algebras, Groups and Geometries 2 (1985), 117-128

3. With Tudor Zamfirescu: Typical Convex Sets of Convex Sets,

Journal of the Australian Mathematical Society, Series A 43 (1987), 287-290

XV

4. Simple Exceptional 16-dimensional Jordan Triple Systems

Proceedings of the American Mathematical Society 100 (1987), 623-626

5. Simple Exceptional Jordan Triple Systems in Characteristic 2

Communications in Algebra 16.11 (1988), 2247-2257

6. Triple Systems with Composition Forms

Communications in Algebra 16.12 (1988), 2569-2577

7. Tangeability of Homogeneous Convex Cones

Algebras, Groups and Geometries 4 (1987), 451-457

8. With Robert Bowdidge and Walter A. Burkhard:
Low Cost Comparison of Large Files
Proceedings of the Tenth International Conference on Distributed Computing Systems,

Paris, 1990, 192-202

9. With Walter A. Burkhard and Kimberly C. Claffy:
Balanced Disk Array Schemes
FEleventh IFEF Symposium on Mass Storage Systems, Monterey, CA, 1991, 45-50

10. With Walter A. Burkhard:
RAID Organization and Performance
Proceedings of the Twelfth International Conference on Distributed Computing Sys-
tems, Yokohama, 1992, 318-325

FIELDS OF STUDY

Major Field: Computer Science
Studies in Theoretical Computer Science.
Professors Patrik Dymond, Christos H. Papadimitriou, Michael Sacks and Heather
Woll

Studies in Computer Systems.
Professors Laurette Bradley, Joseph C. Pasquale, George Polyzos and Augustus C.
Uht

Studies in Operating Research.
Professor T. C. Hu

xXvi

ABSTRACT OF THE DISSERTATION

Reliability and Performance

of Disk Arrays

by
Thomas Johannes Fmil Schwarz
Doctor of Philosophy in Computer Science
University of California, San Diego, 1994
Professor Walther A. Burkhard, Chair

Introduction of recundancy into secondary storage systems in the form of Redundant Arrays
of Independent Disks (RAIDs) has generated both research activity and commercial appli-
cations. The thesis investigates the performance and reliability of RAIDs analytically. In
addition to Level 5 RAIDs with and without spares, it treats higher redundancy extensions
of the Level 5 RAID: two-dimensional RAIDs and disk arrays based on Maximum Distance
Separable (MDS) codes. Finally, we extend the use of MDS codes to implement a storage

space saving distributed database.

xvil

Chapter 1

Introduction

Disk array storage systems, especially those with redundant arrays of independent
disks (RAID) Level 5 data organization [28], provide excellent cost, run-time performance as
well as reliability and will meet the needs of computing systems for the immediate future.
Computing systems, especially those with massive storage requirements, may need even
greater reliability than provided by RAID Level 5 (see [6].)

The reliability of higher level RAID organizations is gained through the introduc-
tion of redundancy by clustering data storage elements into reliability groups.

Our goal is to present and analyze data organization schemes for RAIDs including
RAID Level 5 and schemes that provide higher levels of redundancy. The data organizations,
derived from maximal distance separable (MDS) codes, retain some of the performance
advantages of RAID Level 5 while providing higher reliability[33]. Gibson et al. present the
multi-dimensional parity schemes [12] which form the basis for the other data organizations
discussed here. Our data organizations incorporate novel combinations of spare disks [22]
and strings[11]. We compare these schemes against each other and investigate the impact
of two level of clustering (see [25]).

The thesis is organized as follows: Chapter 2 outlines the modeling assumptions
and the tools used. We first give an overview of the Markov chain approach and then
presents in detail the mathematical background needed for our calculations. The latter
part is technical and the reader need not understand the calculations for the remainder of
the report. We outline the basic components of the disk array and our modeling assump-

tions. Chapter 3 analyzes several varieties of Level 5 RAIDs; we investigate the effects of

a load balancing scheme and the effects of various ways to include spare disk space in the
organization: designated spares, distributed sparing of a string and of a few disks, the latter
in two flavours. We first present the organization and results, then we discuss the technical
details of our investigation. Chapter 4 treats RAID designs based on MDS codes. We give
a short introduction into the coding theoretical background and then analyze the reliability
of some RAID designs based on them. Chapter 5 investigates the reliability of two dimen-
sional RAID schemes. We first explore the potential of the scheme by taking only disk
failures into account. We then examine the possible assignements of disks to strings. We
give reliability numbers for the best stringing schemes. Chapter 6 describes implementation
strategies for the “almost complete address translation scheme” (ACATS). Chapters 7 - 11
treat the performance of a RAID under non-failure mode using a variety of synchronization
schemes and establish that the use of a non-volatile storage cache is imperative for good
performance. Chapter 11 treats in detail the performance of the RAID under the most
common failure modes and for all previously considered organizations. Chapter 12 finally
gives an application of MDS codes to Distributed Data Bases and in particular discusses

the extension of signature schemes to these schemes.

Chapter 2

Modeling Assumptions and Tools

2.1 Terminology

We begin by briefly reviewing the terminology we will be using throughout the
paper.

A disk array or RAID (Redundant Array of Independent Disks) is a collection
of independent disks, on which data is stored redundantly, such that failure of a limited
number of components does not result in data loss.

A reliability group is a group of data storage elements, either whole disks or disk
tracks, that are associated by shared data redundancy, such that failure of one (or more,
depending on the scheme) element(s) leaves all the data accessible. We obtain the redun-
dancy by storing in addition to the data so-called check data on one or more disks or disk
tracks. For clarity, we refer to the original data as “message data.”

A RAID Level 5 data organization reliability group contains data disks and a single
parity check disk [28]; an MDS data organization reliability group contains data disks and
a pair of check disks[33]. A two-dimensional parity RAID groups every storage element in
two different reliability groups. Level 5 organizations can tolerate a single disk failure while
the two dimensional disk array organization withstands a pair of concurrent disk failures
and an MDS based array can be made to withstand even more.

Our orthogonal organization of strings and reliability groups is similar to that of
Gibson [12]. A string is a group of disks that share hardware components such as power

supply and cabling, cooling, small computer system interface (SCSI) controller and cabling

and host bus adapter (HBA) [11]. We consider three varieties of hardware redundancy
within strings. A string is soft if it contains only the basic set of hardware components; as
an example, a string with 10 disks would have two sets of HBAs and SCSI controllers, one
power supply and one cooling fan. A string is hardened if some components are duplicated.
Within this paper, our hardened strings will double the power supply, SCSI controllers
and the HBAs components. A string is super-hardened if all the hardware components are
duplicated. For us a super-hardened string will be a hardened string with duplicate cooling
fans.

A very efficient method to extend the longevity of stored data is to provide spare
disk space. In case of a disk or string failure, data stored on the failed device is reconstructed
on stored in the spare space. We can have a single disk worth of spare space up to several
strings of spare disks. The spare space can be provided by explicit spare disks or through
distributed sparing, in which every disk contains some spare space. The advantage of
distributed sparing consists in reducing the load at all disks in use. We will also investigate
two distributed sparing schemes that only provide a disk or a few disks’ worth of spare
space to protect only against disk failure.

We can give the appearance of unlimited spare strings by quick repair of RAIDs,
which replaces lost devices and causes the RAID to regenerate to the prefailure state.
While short repair times (of a few hours) are a very effective data protection tool, the
hidden (personal) costs can be formidable. We will assume rather leisurely repair times
corresponding to repair on the next business day. Abundance of spare parts does not paly
an important part.

Load balancing (among disks) is an important performance booster, especially in
the presence of failed components. Distributed sparing is one instance in which we see
performance benefits in the normal state. Muntz and Lui have made the observation that
larger clusters than reliability groups are beneficial during the process of reconstruction
on spares ([25].) We adjust their observation to RAIDs consisting of strings of disks. we
introduce a logical and a physical disk layer in the RAID. The physical layer consists of the
disks themselves whereas the logical layer superimposes a large number of virtual RAIDs
over the physical layer. Address translation provides the connection between the layers.

It translates the disk and track addresses of the virtual disks in the logical layer to disk

and track addresses of the physical layer. The virtual disks are arranged in fixed reliability
groups with one virtual disk being the check disk and - in distributed sparing - another
virtual disk being the spare. The easiest address translation scheme uses none: the logical
and the physical layers are identical and the RAID is a level 4 RAID. The classic level 5
RAID uses address translation within the reliability group only. All blocks on a physical disk
belong to one and the same reliability group, but the nature of the data stored on it varies.
Complete Address Translation assigns virtual disk blocks to physical ones quasirandomly.
The most interesting address translation scheme is the Almost Complete Address Translation
Scheme (ACATS,) which respects the string structure of the RAID. It uses tracks as the
basic unit of address translation to gain some performance benefits in the failure situation.
ACATS translates a virtual track address, consisting of a virtual disk address and a track
address. The virtual disk address consists of a string address and a disk-in-string address.
The scheme then selects the physical string and then the physical disk-in-string address in
a quasirandom way. Thus, it implements and address permutation of strings followed by a

permutation of disk addresses in the string.

2.2 Markov Models

2.2.1 Overview

We will use Markov models to calculate the reliability of various disk array designs.
We first give a general overview of the method used, the following sections will then give
the calculations and deductions in more detail.

We capture the various failures modes in a RAID through a number of states. At
each given moment, the RAID is in exactly one state. State transitions describe the failure
of components and the repair of components. We always assume that there is only one
transition at any time. If the probability, with which a state transition occurs, only depend
on the current state, then the system is described in a Markov model. Our use of a Markov
model is justified if we can assume that the failure and repair probabilities are memory-less,
that is, that failure and repair probabilities are described by the exponential probability
distribution. While this assumption conflicts with the proposed bath-tub probability (see
fig. 2.2.1) for the failure probability of a RAID component or with the “bad batch phe-
nomenon” in which disks failure depends on the production batch, the results will depend
on the component MTTF (Mean Time To Failure) more than on the shape of the particular
distribution and still offer excellent comparison material.

We are calculating MTTDL (Mean Time To Data Loss.) We describe data loss
as transition to an absorbing “Failure” state, from which no repair is possible. All other
states represent situations, in which all data stored in a RAID is accessible, possibly through
several reconstruction processes, in which we exploit the intrinsic storage redundancy.

We define the reliability vector g(t), whose dimension is the number of non-failure
states and whose coefficients are the probabilities that the RAID is in the corresponding
non-failure state at time ¢. The survival probability p(t) of the array is simply the sum
of the coefficients of this vector. The marginal probabilities for state transitions between
non-failure states (i.e. the state transition rates) form the coefficients of the matrix M,
whose diagonal elements are the negative probabilities that a state transition will lead away

from a given state. In other words, M is defined by the differential equation

op
— =M - p.
8t P

Failure
Probability

burn-in normal life-cycle burn-out

phase phase
Lite
Time

Figure 2.1: The Bath-Tub Probability Distribution for Component Failure

MTTDL is the expected value of the time to failure:
MTTDL = /0 ()t
We use the Laplace transform to find an closed form expression for MTTDL:
MTTDL = —(1,1,...,1)- M~' - (0)

where p(0) is the initial state (1,0,...,0), that is, the normal state.

A sometimes useful reverse approximation is given by
p(t) = exp(—t/MTTDL).

In the following sections we extend the definition in a more mathematically precise way and
derive the results just mentioned. We give a derivation of the analogue result of discrete

time steps because the derivation is more intuitive.

2.2.2 Definition of Markov Chains

We consider a system characterized by a finite number of states. (We assume that

they are numbered 1 to n. At each given moment the system is in exactly one state. The

system transitions randomly to another state with a given, known transition probability.
If these probabilities depend only on the state and not on the history of the system, the
system is called a Markov chain. If the state transitions happen only at fixed intervals, the
Markov chain is called discrete, if they can happen at any time, it is called continuous.
Because we are modeling reliability of a complex system, we can impose a couple

of assumptions on a Markov chain.

1. There is exactly one, the absorbing or failure, state from which no transition is pos-

sible.

2. All parts of the system are connected to the absorbing state. This means, that we can
find a time such that the probability of reaching the absorbing state from any given

state in this time is positive.

Because the number of states is finite, the second condition translates into the apparently
stronger condition that there exists a time constant 7" and a lower probability bound P
such that the probability of the system reaching the absorbing state from any state in time
T is greater than P.

We say that the system has (not) failed if it is (not) in the failure state. We define
the reliability vector p(¢) =! (p1,...p,) whose coefficients p;(t) is the probability that the
system is in the non-failure state ¢ at time ¢. (The right superscript ¢ refers to the transpose.)
The reliability p(t) is the probability that the system has not failed at time ¢, it is simply

the sum of the coefficients of p(t).

2.2.3 Discrete Markov Chains

Our goal in this section is to derive an expression for the MTTDL (or more gen-
erally, the MTTYF') if we assume that transitions take place at the end of a fixed periods.
While this is a slightly distorting assumption which yields good results only for small time
steps, the derivation is more intuitive and thus more elucidating.

The transition probabilities are collected in the transition matrix M. To be more
precise, M is a square matrix whose number of rows is the number of non-failure states.
The off-diagonal coefficient m; ; is the probability that the system changes from state j to

state 2. The diagonal coefficient m;; is the probability that the system if in state ¢ remains

there and 1 — m,; is the probability that the system leaves state ¢ to go to any other state

including the failure state. The reliability vector g is given by the difference equation
ok +1) = M - p(k)
and any “initial condition” p(0). This implies immediately that
o(k) = Mp(0).

We first derive a techincal lemma that assures us that Z — M with Z the identity matrix is

invertible.

Lemma 1 The geometric series
o0

> MFE

k=0
exists and has value (I — M)~1.
Proof: We know that there is a constant time 7" and a lower probability bound P < 1 such
that the probability to go from any state to the failure state in time T is at least P. The
probability of non-failure in time T regardless of the initial state is consequentially at most
1 — P. The probability of non-failure in time 27" is at most (1 — P)(1 — P) corresponding
to failure during the first T or the second T. By mathematical induction, the probability of

non-failure in time (7 is then bounded from above by (1 — P)!. In our notation this is:
g-MT.p0)<(1-P)T.

(Here €is an n-dimensional vector of ones. Multiplication with € gives the sum of coefficients

of a vector.) For large enough integers s the formula implies:
€-M°-p(0) <a’

with another constant @ < 1. As all the coefficients of M*® are positive or zero numbers,
the equation shows that each coefficient of M? is smaller than a®, for s large enough. By

comparison with the geometric series 3252, a*, the sum

o0

S m*

k=0

exists. If we multiply this sum with Z — M, we obtain Z. This finishes the proof of the
lemma. m

We are now in a position to propose the main formula of this section.

10
Theorem 1 MTTF =¢&-(Z — M)~ - p(0).
Proof: As already mentioned, the reliability at time k is given by
p(k) = 7 M* - p(0),

The probability for failure at time ¢ is the difference between the failure probability at times
k and k — 1 and given by (1 — p(k)) — (1 = p(k — 1)) = p(k — 1) — p(k). The MTTF is the
expected value for the failure time. We use an index shift to obtain an expression that is

useful in itself:

MTTE = 3 (p(k— 1) = p())

We now use the lemma to obtain the desired result:
MTTF = > p(k)
k=0

= > & M p0)
k=0

€-(T— M) p(0).

The result allows us to reduce MTTDL or MTTF calculation to a matrix inversion.

2.2.4 Continuous Markov Chains

This section presents the analogous result for continuous Markov chains. The
transition matrix M is differently defined. The off-diagonal coefficients m; ; of M are the
marginal probabilities of state transition from (non-failure) state j to (non-failure) state i
and the diagonal coefficients m;; are the marginal probabilities of leaving state 7 for either

the failure state or another non-failure state. The coefficients of M are thus the transition

11

rates. The discrete transition matrix corresponds not to our matrix M but rather to Z + M.
We define the reliability vector p and the reliability r as before. From our definitions we

have the fundamental differential equation

op
DM
8t P

MTTEF is the expectation for the failure time £. As failure time is distributed with distri-

bution 1 — p, MTTF is given by
o dp(t
MTTF = —/ (220 4y
0 dt

We assume that there exists a time constant 7" and an upper bound A < 1 such that from
every initial state we reach the absorbing state in time T with probability at least A. As
before we can conclude that the reliability is bound from above by a function f(t) = a’ with
constant @ < 1. This is important to assure convergence in the subsequent calculations.

We can now calculate a more tractable MTTF expression in the following theorem:
Theorem 2 MTTF = —eM ~1p(0).

Proof: We first use integration by parts to obtain a more accessible MTTF expression:

MTTF = —/ (4P 4y
o | di

= limima(—tp(1)) + /Ooop(t)d.t
/0 p(t)d.

The Laplacian of a function f : R — R is defined as L(f)(s) = [;~ f(t)e~*'dt. We note that

L(f)(0) =[5 f(t)dt. Furthermore, integration by parts yields the differentiation theorem

for the Laplacian:

L = [rwetar

t=00

= [f(t)e_“] + s/ooo Ft)e stdt

t=0

= —f(0) + sL(f)(s)

We apply the differentiation theorem to the fundamental differential equation:

op
L VY
6t 537

12

and obtain:

op

sL(p)(s) —p(0) = L(7)

= M- Lgp(s).

If we now set s equal to zero, we have:

—p(0) = M L(9)(0) = [oty

0

We now put everything together to obtain the theorem:

MTTF = / p(t)dt
0

g /0 7 o)t
= @ L(p)0)

= —& M7 p(0).

||
The theorem reduces MTTDL calculations to the determination of the transition

matrix M and the calculation of its inverse.

2.2.5 Numerical Aspects

There are several good algorithms known to take the inverse of a large matrix.
The first procedure is the method of Gauss Jordan. The basic idea is simple: The matrix
is positioned next to the identity matrix and then elementary row transformations will
transform the matrix into the identity matrix, while the same transformations will transform
the identity matrix into the inverse matrix. More concretely, the method proceeds as follows:
Starting with column one, a pivot element is chosen and the corresponding row swapped
with the first row, if necessary. Then the first row is divided by the pivot. Then we subtract
a multiple of the first row from all other rows such that all other elements in the first column
become zero. Then we proceed similarly with the second column. We pick a pivot not in
the first row, switch the row in which the pivot is located with the second row and proceed
to use row-subtraction to render all other elements in the second column zero. We proceed
until the matrix has been transformed into the identity matrix. The same transformations

applied to the identity matrix yield the inverse matrix.

13

The crux of the method is the choice of the most desirable pivot. Simply choosing
the (by magnitude) largest available pivot is a good method. We use implicit pivoting,
which chooses the largest available pivot if the largest elements in all rows would have
been the same. Fortunately, all our transition matrices tend to have the largest coefficients
located on the main diagonal and the choice of pivots will follow it. Full pivoting will
pick the best pivot in any column not touched upon so far and interchange columns. The
column interchange scrambles the order of rows in the inverse matrix. Because of the special
nature of the matrices, we can limit ourselves to partial pivoting, that is without column
interchanges.

Gauss Jordan method tends to be unstable numerically without pivoting, is some-
what slow and in the form presented is storage intensive. However, we can superimpose
both matrices, the one formed by row-transformations from the original matrix and the one
formed form the identity matrix and thus save space.

The second method uses LU decomposition of the matrix. The matrix is written
as a product of a lower and an upper diagonal matrix. Both factors can be inverted easily
and the product (in different order) is the inverse.

To determine the impact of numerical errors on the calculation of MTTF we mul-

tiply the numerical inverse M of M with M and write the result as
M-M=T+A

with error matrix A. The size of the largest coefficient of A is 10°. The size of the largest

coefficient of M~1 is 10™. Then
—EMp(0) = —EM M Mp(0) = —eM 1 p(0) + —&M T Ap(0)

gives us an estimate of the error by replacing the unknown quantity M ~' with the known
M. Because p(0) is a unit vector, the error is at most of size n® - 1045, Most of the actual
Markov models have small to moderate dimensions n and the error is not noticeable. Fven
in our biggest model the first 3 decimal digits are valid. As the approximation of the error

is easy to calculate, we use it in our calculations to flag untrustworthy results.

14

Figure 2.2: An Simple Example for a Markov Chain

2.2.6 An Example

We include a simple example of a Markov model to help the reader familiarize
oneself with our calculational method of computing Mean Time to Failure. In Figure 2.2
we present three state Markov Model.

Assume that the starting state is 1. Let p; and p; denote the probabilities that the
system is in State 1 or State 2 respectively. Let us first assume that our Model is discrete,
that is, that at fixed times the state changes according to the given probabilities. Then the

new probabilities can be calculated from the old ones by

p2(t+1) = 3pi(t) + 8pa(t).
or by
p2(t+1) 3 .8 p2(t)
Then
. 6.67 3.33
(ZT-M)" =
10 10

and we obtain 16.67 for the MTTF from starting state 1, namely the sum of coefficients of
the first column. This number has as dimension the number of possible state transaction.

We now assume that the Markov model is continuous. Then

tm —3p(t) + .Apa(t)
2 = 3pi(t) - 2p(d).

15

Hence, the transition matrix M is almost the same, differing by the addend 7.

-3 .1
M =
3 =2
We can interpret the coefficients immediately from the diagram. A transition from State i

to State j is represented in the transition matrix by lowering the (i,i) entry by the transition

probability and making the transition probability the (j,i) entry.

16

2.3 Disk Array Components and Failure Rates

We consider three varieties of components within a disk array subsystem. There
are (i) individual disk drives, (ii) strings of disks and (iii) essential components which, by
definition are common to all disks such that failure leads to complete data inavailability.
We do not model operation failure in this work though it can have a significant effect on
reliability. However, our current results will point in the proper direction when beginning
such an effort. For our reliability calculations, we assume that components fail with expo-
nential (memory-less) probability. While this assumption ignores the well-known “bathtub”
life expectancy of components it yields both excellent approximations and bases for a design
decision.

The most crucial factor in disk array reliability and costs is the frequency of repair.
In the extreme, a response time of a few minutes is both expensive and phenomenally
efficient. We assume that a typical response time is 35 hours, which corresponds to a repair
the next work day.

The basic components of the disk array are, of course, the individual disk drives.
The life expectancy of disk drives has increased considerably over the last decade. For ex-
ample, Schulte [32] and Gibson [11] in the late eighties use a MTTF of 50,000 hours. Today
(1993) MTTF quotes of 500,000 hours are common. In the past producers have tended
to understate the MTTF of their products. This policy counteracts a common misunder-
standing that MTTF is a guaranteed life expectancy instead of average life expectancy.
For example, if the failure probability is memory-less, three failures are observed during a
single MTTF interval in about 8% of all cases. It is notoriously difficult to predict future
technological development and we refrain from speculation on the longevity of future disks.
As disks contain mechanical parts, we can expect disk MTTF to be small compared with
purely electronic devices.

A disk array needs certain central elements, a disk array controller, a non-volatile
cache to store data to be stored to the disk array and intermediate results like old informa-
tion and check data, and an encoder. These elements are crucial, their failure disables the
array. As they are electronic, their reliance is very high.

A string is a collection of disk drives sharing several hardware components: power

17

event rates (per hour) identifier
essential component failure 1x 1077 €
disk drive failure 2x 10753
string failure soft 2x 1075
hardened 5x 1076
super-hardened 5x 1078
component repair 2.77 x 1072 P

Table 2.1: Event Rates

supply, cooling, cabling, host bus adapters (HBA) and small computer system interface
(SCSI) controllers. An HBA can serve up to five disks, if our strings contain more disks, than
there are the appropriate number of HBAs. We consider varieties of hardware redundancy
within strings: A string is soft if it contains only the basic set of hardware components. A
string with ten disks would have two sets of HBAs and SCSI controllers, one power supply
and one cooling fan. The string MTTF for such an ensemble is around 50,000 hours. A
string is hardened if some components are duplicated. Within this report our hardened
strings will double the power supply, SCSI controllers and HBAs but only contain one fan.
The MTTF is increased to about 200,000 hours. A superhardened string doubles the cooling
and might even provide additional HBA and SCSI controller redundancy. This configuration
has a MTTF of more than 1,000,000 hours.

With a certain probability, one of the essential disk array components will fail.
We assume that the disk array is hardened against power failure, otherwise, we are at the
mercy of the power company and MTTF are low.

In Table 2.1 we summarize transition event rates used in our calculations.

Chapter 3

Level 5 RAIDs

3.1 Overview

Disk accesses are inherently slower than main memory accesses by a factor of about
10°. (In 1993, a DRAM access is typically between 70 and 120 nanoseconds, whereas a disk
access takes about 5 to 40 milliseconds.) The discrepancy between secondary memory and
processor speeds makes highly parallel storage elements like a farm of independent disks
very enticing. However, the MTTF of a system of n independent, but crucial, components
is 1/n of the MTTF of a single component, so that the reliability of such a disk farm is
bad. For example, a disk farm with 100 disks would have a MTTDL of 21 to 210 days
only. Mirrored disks and mirrored systems have been used for quite a while in failure
tolerant systems. While the reliability is very attractive, the hardware costs are not. A less
expensive solution was presented by Patterson, Gibson, Karp, Katz, Hellerstein [28], [11],
[12]. By introducing redundancy in a less drastic way performance, reliability and costs
become acceptable.

The literature distinguishes five varieties of RAID organizations. In this thesis,
we are only interested in the Level 5 RAID. The disks in a Level 5 RAID are divided in
mutually exclusive reliability groups, each containing one extra “check” disk which stores
the parity of the other disks in the reliability group. As the parity together with all but one
disk contents yields the remaining disk contents, the ensemble tolerates failure of one disk
without loosing access to any data. Under fault-free operating conditions, a read operation

proceeds by reading directly from the data storing “information” or “message” disk. A

18

19

write is more complicated, as we need to update parity as well. Instead of recalculating
the parity data, which would involve reading the other disks in the reliability group, we
calculate the partity as the parity of the new and old information and the old parity data.
(If we wrote to an empty sector, then the old information is assumed to be a string of
zero bits.) Every write at the “logical” level involves two read operations and two write
operation as well as some arithmetic. During a write burst a disk, that would exclusively
store parity, would be quite busy and become a performance bottleneck. For that reason
the Level 5 RAID organization disperses the parity information throughout the reliability
group. This is an instance of an addressing scheme for load-balancing: For example, the
parity for the first track might be stored on the first disk, the parity for the second track on
the second disk and so on. We can implement this by using a circular shifting permutation
for disk addresses, that would map logical disk 1 (the check disk) on physical disk 1 for
track number 1, logical disk 1 on physical disk 2 for track number 2 and so on.

The complexity of the write operation introduces a time window of vulnerability
into the RAID: If a power failure disables the RAID momentarily during an update and
another disk in the reliability group fails, or if the disks to which we write is disabled
before the parity can be updated, then the check data do not reflect the parity and the disk
failure leads to data-loss. If we use disk write synchronization, where we try to update both
information and check disks as simultaneously as possible, then the performance deteriorates
intolerably. We simply introduce a non-volatile cache into the array organization to solve
the problem. The cache preserves the data of all write operations to which the RAID
has committed even through the event of a malfunction and allows the RAID to restart
operations interrupted by such an event. Hence, the parity information always reflects the
data on the message disks in a reliability group.

To minimize the impact of string failure, Gibson [11], see also [32], introduces an
orthogonal arrangement of strings and reliability groups. Each string contains exactly one
disk in each reliability group and vice versa.

Introduction of spare disks increases considerably the reliability. If a disk fails,
its contents - both information and check data - are reconstructed on the spare disk. The
spare disk serves such as a pro tempore self-repair tool. The reconstruction time can be as

short as a few minutes (with noticeable performance degradation) or long enough to render

20

7R
TR
TR
TR
7R
TR
R R
7R

Reliability
Group
— — — — — — — — — —
String

Figure 3.1: Disk Array Ensemble with Ten Strings and Five Reliability Groups

the performance degradation negligible. We can use on-demand reconstruction, which only
reconstructs data that are being read, forced reconstruction, which rebuilds the contents of
the failed disk independently of demand, and any combination between these two principal

possibilities.

3.2 Level 5 RAID Organizations and Reliability Results

Inside the Level 5 Raid organization we distinguish a number of subschemes, whose
reliability we investigate in the following sections. The distinguishing elements between the
different schemes are the number and arrangement of spares and the extent of load balancing
through disk address translation.

We fix notations: m denotes the number of reliability groups, n the number of
disks in a reliability group including the check disks and the spare disks, if present.

We determine the reliability figures for the different RAIDs organizations for a
basic RAID with 5 disks per string and 10 strings for a storage capacity of mostly 45 disks
as depicted in Figure 3.1. We discuss some of the Markov models for an additional example
of a RAID with 10 disks per string and 11 strings, to reassure the reader and us that the

Markov models are applicable over a wide range of RAID dimensions.

21

3.2.1 Declustering Level 5 RAIDs

We call a RAID which has the orthogonal arrangement of reliability groups and
strings (as in Figure 3.1) a classic RAID. If the classic Level 5 RAID suffers a disk failure,
the load and the utilization of the disks in the same reliability group almost doubles. We
can avoid the resulting loss of performance by spreading the additional work over all the
other disks in the RAID. The literature calls this process clustering [25] or declustering [14].
Because (de)clustering equalizes the disk loads not only under fault-free conditions, we refer
to it as a form of load balancing and distinguish complete and almost complete load balanc-
ing. In Section 3.3.3 we introduce a new method for load balancing, the Almost Complete
Address Translation Scheme (ACATS). ACATS introduces a layer of virtual disks that are
organized in the same orthogonal arrangement as a classic Level 5 RAID. By permuting
separately the string and the disk-in-string addresses, we provide address translation to the
actual disks. In contrast to the load balancing scheme given by Holland in [14] our scheme

respects track and block addresses. This allows for easier reconstruction on spares.

3.2.2 Level 5 Raids with Hot Stand-By Disks

A dramatic reliability enhancement for disk arrays is obtained by shortening the
repair times. As we assume that components fail independently, two failures in a short
repair interval become very unlikely and with smaller repair times, the chance of data loss
becomes arbitrarily small. We can simulate these short repair times by providing spare
components, that can take over until we can replace the faulty device.

We investigate the provision of a small number of spare disks and the provision of
a full spare string. Spares provide excellent reliability against disk and, in the latter case,
string failure. Our results are based on the assumption of independent component failure
and have to be read with this caveat in mind.

We can provide stand-by protection by (a) providing spare disks on their own string
or (b) by providing spare space throughout the disk array. The latter is called distributed
sparing and was introduced by [22]. Distributed sparing uses the spare disks under fault-free
conditions and has then better performance.

In the event of disk failure, the contents of a failed disk are reconstructed on spare

space. We can reconstruct a now inaccessible data block on demand, that is, when the

22

block is read and needs to be reconstructed anyway, or independently. In practice, some
compromise between these two strategies could be pursued. The total time to reconstruction
can become an important reliability factor, if the time is large. We will assume that it is
short enough to be indistinguishable from being instantaneous.

We use distributed sparing to provide as little as one disk’s worth of spare space.
We distinguish two subschemes, called Naive Distributed Sparing (NDS) and Safe Dis-
tributed Sparing (SDS). The former scheme just reconstructs the data on the failed disk,
whereas the second scheme treats the reconstruction writes as RAID writes. We will see
that SDS gives indeed better reliability over NDS and that the performance in the single

disk failure case is not significantly worse than NDS (see Section 11.2.5.)

3.2.3 Comparison of RAID MTTDL for RAIDS with Different Storage

Capacities

The MTTDL of some of our schemes are hard to compare, as the storage capacities
differ slightly. We propose here the “Single Disk Fquivalent MTTDL” (SDE MTTDL) as
an measure. We assume that the same amount of data is stored on a set of disks of the same
size. We then calculate the MTTF that these disks would have to evidence to achieve the
same MTTDL as the RAID organization. As the MTTF of an ensemble of N components
is 1/N times the MTTF of a single component, we obtain the SDE MTTDL by multiplying
the MTTDL of a RAID organization by the storage capacity measured in numbers of disks.
The higher the SDE measure, the higher is the reliability. We give the SDE MTTDL for
organizations with one or two spares in Table 3.2.

In Section 3.3 we give an overview over all Level 5 RAID organizations that we
analyze. Section 3.4 then presents in the same order the derivations and the details of the
Markov models. The subsection numbers in Sections 3.3 and 3.4 correspond directly. We
conclude Section 3.3 by presenting Tables 3.1 and 3.2 which present sample mean time to

data loss results. As always, we use the parameters specified in Table 2.1.

23

3.3 Overview of Level 5 RAID Organizations

3.3.1 Classic Level 5 RAID

Our orthogonal arrangement of reliability groups and strings is the same as that
in Gibson [11]. (See Figure 3.1.)

Our first organization does not use spares and uses a simple address translation
scheme, in which disk addresses only inside a reliability group are permuted. This is the
set-up that has been investigated by Schulze [32] and Gibson [11]. Data loss occurs if two

disks in a reliability group are inaccessible.

3.3.2 Level 5 RAID with Complete Address Translation

If the classic Level 5 RAID suffers a disk failure, the load and the utilization of
the disks in the same reliability group almost doubles. (See Chapter 10.) We can avoid the
resulting loss of performance by spreading the additional work over all the other disks in
the RAID.

We implement complete load balancing with the least discriminate track address
translation: We permute all the disks in the disk array. To be more precise, if we write
to the logical disk address (D, 7) where D is the number of a disk and 7 is a track (or
even block) number, then the physical address is (o,(D),) Here, o denotes a disk address
permutation, which depends on the track number 7. If the permutation is chosen quasi-
randomly, we achieve almost complete load balancing. If a disk failed, then every disk
has some tracks which belong to the same reliability group as tracks on the lost disk.
Consequentially, every disk has a fair share in the reconstruction process for lost data. (We
talk about the implementations of such an addressing scheme in more detail in Chapter 6.)
Our Complete Address Translation Scheme (CATS) is an instance of declustering.

The RAID will suffer data loss if two tracks belonging to the same reliability group
are inaccessible. This happens when two disks or one string fail. The Markov model (Figure
3.6 has only two states and we can give MTTF in a closed, though not very elucidating

form in Theorem 3.

Theorem 3 The MTTDL for a Level 5 RAID with complete load balancing for a failed

24

disk is given by

p+e+ (2nm—1)A+ np

MTTDL =
(e + nmA + nu)(e+ (nm — V)X + nu+ p) — pnmA

3.3.3 Level 5 RAID with Almost Complete Disk Address Translation
(ACATS)

The preceding organization was vulnerable to single string failure. With only a
small change in the address translation scheme we can achieve almost the same performance
benefits in the disk failure case while gaining tolerance against single disk failure.

The almost complete disk address translation scheme (ACATS) never places tracks
on disks in the same string in the same reliability group. To implement it, we address disks
with a string number and a disk-in-string address. We permute string addresses and then
disk-in-string addresses. That is, we first pick a string and then a disk on that string. A
track 7 on the (logical) disk located in string S; in the j** position on the string is then
located on the physical disk on string 5,(;y and with disk-in-string address (7).

The disk array can now tolerate both a disk failure and a string failure but not
both. In some instances failure of two or even more disks does not lead to data loss, namely
if the failed disks are all located on the same string.

As the Markov model (depicted in Figure 3.6) has only two non-failure states, we

can give the MTTDL result in closed form.

Theorem 4 The MTTDL for a Level 5 RAID with almost complete load balancing for a

failed disk is given by

pte+ (2n—1)mA4+(2n— 1)

MTTDL =
(e+nmA+nu)p+e+(n—1)mA+ (n—1)u) — p(nmA+ np)

A RAID with CATS is only two disk failures or one string failure away from data
loss. This extreme vulnerability is expressed in the low MTTDL values in Table 3.1. A
RAID with ACATS can withstand two string failures, but still only two disk failures in
different strings. In contrast, the classic Level 5 RAID can withstand most failures of 2
disks, which leads to the higher reliability values. We can see the higher reliability of the
classic scheme over ACATS, or any other declustering scheme, for all values in Table 3.1.

In the following schemes we introduce spare space or spare disks in the classic and the

25

ACATS RAID organizations. As the tolerance against disk failures improves, the better
disk failure tolerance of the classic scheme becomes less important and the difference in
reliability between the two schemes is diminuished, only to widen again somewhat, when
we introduce a full spare string into the two organizations and provide the capability of

withstanding two string failures.

3.3.4 Classic Level 5 RAID with Distributed Disk Sparing

Our first disk array organization with spares is built on top of the classic Level 5
RAID. The equivalent of one or two of the nm disks in the RAID is set apart as a spare, but
with distributed sparing one track among all nm tracks with the same track address is used
as a spare track. Then we distribute the spare track evenly throughout the disk array. This
organization combines good performance with good reliability against disk failure, but does
not increase resilience against string failure. According to the nature of the update we dis-
tinguish NDS (Naive Distributed Sparing) and SDS (Safe Distributed Sparing.) The latter

in connection with super hardened strings already achieves fully satisfactory reliability.

3.3.5 Level 5 RAID with Distributed Disk Sparing and Almost Complete
Load Balancing

Our second organization with spares uses ACATS, which we introduced in 3.3.3.
We reserve one or two logical information disk as spare space. The address translation
scheme assures that all physical disks will carry the spare space in almost equal proportions.
The contents of the first failed disk, whether information or check, will be reconstructed on
the spare spaces. Only one disk will contain a spare track for any given track number.

While slightly worse than in the preceding scheme, SDS in conjunction with super
hardened strings achieves impressive reliability. As the performance differences between

SDS and NDS are not substantial, the higher reliability numbers indicate use of SDS.

3.3.6 Classic Level 5 RAID with a String of Spares

In contrast to distributed disk sparing, the present scheme uses dedicated spares
located on a special smaller string, the string of spares. This scheme achieves comparable

reliability with SDS distributed sparing. While it offers a simpler organization, the scheme

26

does not use the spare disks to lower utilization in the non-failure state and has one more

string. We assume that the string of spares is smaller than a normal string.

3.3.7 Level 5 RAID with a Distributed String of Spares and Almost Com-
plete Load Balancing

This organization is the companion scheme to the previous scheme (Section 3.3.6
and provides a small set of spares on a string. The reliability is somewhat smaller than for
the Classic RAID, but the considerable disk failure tolerance is shortening the gap.

The load balancing addressing scheme is the same as in Section 3.3.3. As a con-
sequence, the effects of two disk failures in the same string are less severe than two disk
failures in different strings. Our scheme uses reassignment of spares. The gains of this

procedure are limited, as the occasion only arises infrequently.

3.3.8 Classic Level 5 RAID with a Distributed Spare String

We now consider organizations which are capable of withstanding even two string
failures without data loss. Our first organization, by [22] provides a full spare string, but
keeps the classic fixed assignment of reliability groups. We distribute the spare string
just like the string of checks. In case of disk failure, the reliability group uses the spare
space to reconstruct lost message or check data. If a second disk fails, available spare
space from another reliability group is “borrowed.” An egoistic strategy that reserves spare
space for the reliability group it is located in leads to the same reliability as the MDS
based RAIDS considered later. We reassign spare space used by one reliability group under
certain circumstances. This procedure, which can be executed quite leisurely, achieves
another, smaller reliability boost. This scheme shows the best reliability of all schemes

considered here.

3.3.9 Distributed String Sparing with Almost Complete Load Balancing

The second organization combines Distributed Sparing with ACATS. An ACATS
uses string permutations as one of the two steps of address translations and hence blends
very well with distributed sparing. The resulting reliability falls short of the Classic scheme

but is still very impressive.

27

Disk Storage MTTDL MTTDL MTTDL
Array Capacity (in years) (in years) (in years)
Organization (disks) | Super Strings Hard Strings Soft Strings
No Redundancy 45 0.11 0.11 0.10
3.3.1: Classic 45 17.40 11.84 5.76
(3.3.2: CATS 45 3.46 1.41 0.50
(3.3.3): ACATS 45 3.73 3.40 2.63
(3.3.4): Classic (NDS) 44 162.64 29.93 8.11
1 Spare
Classic (NDS) 43 640.32 34.66 8.41
2 Spares
Classic (SDS) 44 335.56 56.75 14.33
1 Spare
Classic (SDS) 44 862.91 65.04 15.09
2 Spares
(3.3.5): ACATS (NDS) 44 91.46 26.20 7.81
1 Spare
ACATS (NDS) 44 613.87 34.58 8.41
2 Spares
ACATS (SDS) 44 98.21 40.36 13.02
1 Spare
ACATS (SDS) 43 719.23 64.08 15.04
2 Spares
(3.3.6): Classic 45 326.95 65.61 16.60
1 Sp. Str.
Classic 45 885.18 78.22 17.82
2 Sp. Str.
(3.3.7): ACATS 45 94.64 38.98 12.50
1 Sp. Str.
ACATS 45 683.70 58.29 13.64
2 Sp. Str.
(3.3.8): Classic Distr. 45 1133.85 776.74 286.01
String Sparing
(3.3.9): ACATS Distr. 45 1119.00 496.84 157.88

String Sparing

Table 3.1: MTTDL Values for Level 5 RAID Organizations

28

Disk
Array
Organization

SDE MTTDL SDE MTTDL SDE MTTDL

(in years)
Super Strings

(in years)
Hard Strings

(in years)
Soft Strings

Classic (NDS) 1 Sp.
Classic (NDS) 2 Sp.
Classic (SDS) 1 Sp.
Classic (SDS) 2 Sp.

ACATS (NDS) 1 Sp.
ACATS (NDS) 2 Sp.

ACATS (SDS) 1 Sp.
ACATS (SDS) 2 Sp.
Classic Sp. Str. (1)
Classic Sp. Str. (2)
ACATS Sp. Str. (1)
ACATS Sp. Str. (2)

7156
27534
14765
37105

4024
26396

4321
30927
14713
39833

4259
30767

1317
1490
2497
2797
1153
1487
1776
2755
2952
3520
1754
2623

357
362
631
649
344
349
573
647
47
802
563
614

Table 3.2: Single Disk Equivalent MTTDIL Values

29

+9.9990y

Figure 3.2: Markov Model for the Classic Raid Organization with 5 Reliability Groups and
10 Strings.

3.4 Modeling Reliability

The states of our Markov models describe the failure of components and their
repair. In all our models, a transition describing repair will go from all non-failure states
to the fault-free state. A transition with probability € describes the failure of an essential
component. We assume € to be quite low, as the essential components are all non-mechanical

devices.

3.4.1 Classic Level 5 RAID

In our first model, the disk array contains no spare disks and address translation
is only done inside a reliability group. The array suffers data loss only if two or more disks
in the same reliability group become inaccessible. We call a reliability group with one failed
disk vulnerable. The number of vulnerable groups label the non-failure states of our Markov
model, which we give in Figure 3.2. State 0 corresponds to the fault-free state in which
every RAID component is functioning. Additionally, there is a string failure state. There
is a subtle, but important difference between state n and the string failure state. While the

number of failed disks in both states is the same, in the latter case, they are all located on

30

200 100 —
1 80
150 4
w 1 w
g § 9
2 1 2
- 100 _
5 =
= 1 = 40
= . =
50
4 20 -
0 e 0 e e
0 20 40 60 80 100 10000 100000 1000000
Repair Time (hours) Disk MTTF (hours)

Figure 3.3: Sensitivity Analysis for the Classic Level 5 RAID with soft strings: MTTDL
Dependency on the Repair Time (left) and on Disk MTTF (right).

the same string, which is not necessarily true in the former state. The probabilities of data
loss generating string failure are different, which is reflected in different transition rates to
the failure state.

Repair transitions from every non-failure state with the exception of the fault-
free state to the fault-free state with marginal probability p. Essential component failure
transitions from any non-failure state to the failure state with marginal probability e.

Disk failure in a non-vulnerable reliability group results in a transition to the next
higher state and disk failure in a vulnerable group to data loss. From state i the former
transition is taken with marginal probability (m — ¢)nA and the latter with probability inA.
A string failure either leads to transition to the string failure state (where all groups are
vulnerable) or to a transition to the data loss state. The former transition happens if all
previously failed disks are located on the failing string, so that the marginal probability for
the transition from state i to state m amounts to (1/n')nu. The string failure component
of the marginal probability to transition from state i to the failure state is (1 — 1/n")npu.
The RAID has lost all redundancy in the string failure state and suffers data loss if any
components fail.

We present the Markov model in Figure 3.2. The result of our sample calculations

31

nmA
®. ©®
dae /
Y

(nm-1) A
n +Nn+e

Data
Loss

Figure 3.4: Markov Model for the Level 5 RAID with Complete Disk Address Translation

are shown in Table 3.1. In Figure 3.3 we give a small study on the influence of repair
time and disk MTTF. We see that very short repair times boost the MTTDL rating. The

parameters are given in Table 2.1.

3.4.2 Level 5 RAID with Complete Address Translation

The classic Level 5 RAID with Complete Address Translation (CATS) places a
given track of a given disk (seemingly) randomly in a given reliability group. As a result of
this shuffling, the RAID loses data with extremely high probability if any two disks fail.

Let us prove this statement. Two randomly chosen disks are located in the same
reliability group with probability p = (n — 1)/(nm — 1). With complete load balancing,
there is however not one but 1000 chances (the number of tracks) for two given physical
disks to be contained in the same reliability group for at least one track number. The

)1990 which is close enough to one for all practical

probability for data loss is then 1 — (1 —p
purposes. (For example for the small RAID with 5*9 disks we obtain 4 x 1072 for the
data survival chances with two failed disks.) Our chances to avoid data loss are even worse
if a whole string has failed. In our calculation we assumed that CATS assigns disks to
reliability groups randomly. In reality, CATS uses a pseudo-random process to generate

a fixed addressing scheme. If the generation process is not very good, it is possible that

certain pairs of disks will never be assigned to the same reliability group. Perversely, this

32

increases reliability, but not by much. We will always assume in reliability calculations that
the addressing schemes obtained through pseudo-random assignments of disks are indeed
random.

Our Markov model (in Figure 3.4) has only two non-failure states: the fault-free
state and a state indicating loss of a single disk. A repair corresponds to a state transition
with probability p from the failed disk state to the fault-free state. An essential component
failure is indicated by a transition with probability ¢ from both non-failure states to the
failure state. A disk failure moves the system with probability nmA from the fault-free state
to the failed disk state. A transition from both non-failure states to the failure state with
probability nu describes a string failure. A second disk failure is represented by a transition
from the failed disk state to the failure state, which is taken with probability (nm — 1)A.
We summarize the transitions in the transition matrix M.

o - —€—nmA —ny p
nma —p—e€—np—(nm—1)A

The determinant of M is

det(M) = (e+ nmA+nu)(p+ e+ nu+ (nm—1)A — pnmA

and the inverse of M is

—p—c—nu—(nm— 1)\ —
M~ = det(M)™* - P) a)) P
—nm —€—nmA—ny

and we obtain the MTTF as the negative sum of the first column. This proves theorem 3.

We use the RAID to again explore the sensitivities to important parameters. In
Figure 3.5 we present the RAID MTTDL dependency on the repair and on the Disk MTTF.
The parameters are again the ones in Table 2.1. We can see that shortening the repair time
can have dramatic effects and that the efficacy of lengthening the Disk MTTF looses beyond

the point when other failure causes become dominant.

3.4.3 The Level 5 RAID with Almost Complete Load Balancing

Almost Complete Load Balancing is implemented by the Almost Complete Address

Translation Scheme (ACATS). This scheme never places tracks of the same reliability group

33

100 100
80+ 80
w o
60— 60
g g
w w
E E
S 40 S 40+
204 20
0 R e e e 0 = e
0 20 40 60 80 100 10000 100000 1000000
Repair Time (hours) Disk MTTF (hours)

Figure 3.5: Sensitivity Analysis for the CATS RAID with soft strings: MTTDL Dependency
on the Repair Time (left) and on Disk MTTF (right).

on the same string. However, similarly as in 3.4.2, the probability that the inaccessibility
of two disks on different strings leads to data loss is almost undistinguishable from 1. We
can determine the MTTDL from the Markov model in Figure 3.6 with only two non-failure
states. The first one describes the fault-free operating mode, the second depicts a vulnerable
situation in which one string or disks on one string have failed.

As usual, we have a repair transition from the vulnerable state to the fault-free
state as well as an essential component failure transitioning from either state to the failure
state. In the fault-free state, a transition to the vulnerable state takes place with probability
nmA+npu, corresponding to disk and string failure. In the vulnerable state, only disk failures
outside the already afflicted string matter, hence we observe a transition to the failure state
with probability (n — 1)mA + (n — 1)u. We obtain for the transition matrix M:

—€—nmA—nu p

M =
nmA + nu —p—e—(n—1Dpu—(n-1)mA

The determinant of M is

detiM)=(e+nmA+nu)(p+e+(n—1)mA+(n—1)u)— p(nmA + np)

34

nmA
+ny
foma\
state)
P (n=-1)mA
Hn-1)p
£ +€

Data
Loss

Figure 3.6: Markov Model for the Level 5 RAID with ACATS

and the inverse of M is

—p—c—(n—1u—(n—-1)mA —
M = det(ary - | 7 (n—1p—(n—1) p

—nmA — ny —€—nmA—ny
MTTDL is now given by the negative sum of the first column of the inverse matrix:

pte+ (2n—1)mA4+(2n— 1)

MTTDL =
(e+nmA+nu)p+e+(n—1)mA+ (n—1)u) — p(nmA+ np)

which proves Theorem 4.

35

track i 1 O track | e; 47 7;
1: ig ig iQ C9 1: iQ ?.,2 ’ig C9
track | ¢1 41 11 0y track | e; 47 7;
2: ig iQ C9 2: il ig ’ig C9
track | 1 1 track | e; 47 7;
(a) 3: cog 13 1lg 19 (b) 3: co 19 19 19
track | ¢1 11 11 0y track | e; 47 7;
4: ()] iQ ig 4: Co le ’ig iQ
track | 71 ¢ 7 track | 41 ¢; 7;
H: ig ig ig Cy H: ig ig 7;2 Cy
track | ¢1 41 11 0y track | e; 47 4;
6: ig Cy ig 6: ig Cy 7;1 ig

Figure 3.7: A Two By Four Disk Array: (a) Fault-Free Data Lay-Out (b) Data Lay-Out
After Disk Failure

3.4.4 Classic Level 5 RAID with Distributed Disk Sparing

Our organization introduces spare space into the classic Level 5 RAID organization.
At the track level, a single track in the whole RAID is reserved as spare space. This
decreases the storage capacity to a very tolerable (nm — 1)/nm of the total capacity. We
first present the Naive Distributed Sparing (NDS) scheme. When a disk fails, its contents
are reconfigured and placed on the spare space. In contrast, Safe Distributed Sparing (SDS)
updates the check data of the reliability group, in which the spare track happens to be
situated as well. Adding one further spare track increases reliability consistently and we
give the reliability numbers, too.

This organization can tolerate any two disk failures or a string failure without
data loss. However, a disk failure followed by a string failure can lead to data loss. We
illustrate this case in Figure 3.7. We depict the data lay-out in a small disk array with four
strings and two reliability group. The Figure 3.7 (a) shows the fault-free lay-out: the spare
space is left blank, and Figure 3.7 (b) the lay-out after failure of the first disk in the fourth
string. All of the original data are still there. In this compromised situation failure of the
second and third string leads to data loss. In general, data loss is caused by the failure of a
string, which contained two tracks from the same reliability group. Then one of these tracks

must have been reconstructed on spare space, because the original data lay-out avoided this

36

situation on purpose. If the failed disk was located on the string which now is failing, all
the data are safe. Otherwise, the probability for data loss at the track level is the product
of 1/n, (the probability that the spare track was located on the string,) with (m — 1)/m,
(the probability that the failed disks track carried a reliability group located on the string.)
Globally, the situation is worse: data loss will occur with probability 1—(1—(m—1)nm)'%.
For our examples, m = 5, n = 10 and m = 10, n = 11 the probabilities are 1 — 107 and
1 — 10737 respectively.

If a string fails first, then at most one reliability group has still the original re-
dundancy. In these circumstances, a disk failure will lead with even higher probability
than before to data loss. Our calculations have shown that string and disk failure are not
tolerated without data loss. Of course, two string failures are fatal, too.

If a disk fails, its contents are replicated on the spare space throughout the array.
Even if a second disk in the same reliability group fails, the data are safe: Only those tracks
of disk 1 are on disk 2 for which disk 2 was originally empty. A scenario, in which 2 disks
fail in the same reliability group and in addition a third disk fails (in either the same or
another reliability group,) implies data loss, as the additional disk contained 1/(mn — 1) of
the tracks of the first failed disk which are necessary to access the data of the disk which
was the second to fail. We call a reliability group vulnerable if one disk in the group has
failed without being replaced by a spare. We can capture the behavior of this scheme by
appending an additional state m 4 2 describing two disk failures in the same group to the
Markov model in Section 3.4.1.

We are now ready to define the states of the Markov model, given in Figure 3.8.
State 0 describes the fault-free situation where all components function. State labels 1, 2,
...,m give the number of vulnerable reliability groups, that is, groups with exactly one
disk failure. State m 4 1 describes string failure and state m + 2 is our exceptional state,
characterized by two failed disk in the same reliability group.

The description of repair and essential component failure are straight-forward. In
state 1 we observe an transition to state m 4+ 2, the expceptional state, with marginal prob-
ability (n — 1)A, which replaces part of the transition to the failure state. Any component
failure in the exceptional state leads to data loss, as we saw above. The other transitions

are the same as in the Markov model for the classic Level 5 RAID in Section 3.4.1: Failure

37

500 40\ 30 20 10
@ OHOF OEORO
i 01

iV

Figure 3.8: Markov Model for the Classic Raid Organization with NDS: 1 Spare, 5 Reliability

Groups and 10 Strings. Not shown are transitions from repair and essential component

failure. Note, that state 5 and the string failure state 6 are not identical.

of a disk in a vulnerable reliability group leads to data loss. Similarly, a string failure will
lead to data loss, until all previously failed disks are located on the string.

We can strengthen reliability against disk failure further by introducing spare space
to replace the contents of a second failed disk. Our scheme protects against at least three
disk failures.

The Markov model is a further modification of the one in Section 3.4.1. The first
two failures do not lead to more complicated read operation, because the spare space takes
over. For more than three failures, we only need to keep track of how many reliability groups
are vulnerable. However, if the first three failures are in exaclty two different reliability
groups, data loss has been avoided: we capture this with two additional states, one of
which describes two failures afflicting the same reliability group and the other one depicts
three failures, two of which are in the same reliability group.

We present the Markov chains in numerical form for our small examples in Figures
3.8 and 3.10. We do not show repair and essential component failure transitions. In contrast
to Figure 3.2 we did not collapse the string sailure state with state 5 (Failure of 5 disks.) In

Figure 3.10 state 0 is the fault-free state, state 1 describes one lost disk, state 2 describes

38

two lost disk in different reliability groups, states 3, 4, 5 are labeled by the number of
vulnerable reliability groups, state 6 stands for a situation in which two disks in the same
reliability group have failed and state 7 for the failure of three disks, of which at least two
are located in the same reliability group.

We explore the impact of reconstruction time on spare in Figures 3.9. To obtain
the MTTDL values, we modify the transition rates in the Markov Chain. There is one state
transition, in which we reconstruct the contents of a failed disk and store it on the spare
space. We calculate the probability that an additional component failure will lead to data
loss during this time and adjust the transition rate to the target state of the transition.
Because the reconstruction time is almost deterministic, our procedure is better than the
introduction of additional states, which would also lead to bigger matrices and thus increase
the potential of numerical error. Reconstruction time impacts the MTTDL, but not greatly
unless reconstruction is very leisurely. As a typical reconstruction time would be on the scale
of 6 minutes to half an hour, our MTTDL times calculated on the optimistic assumptions
that reconstruction is instantaneous, lead only for very large MTTDL times to noticeable
differences.

Safe Distributed Sparing improves reliability considerably while incurring slightly
longer disk data reconstruction times (see Chapter 10.) In SDS we do not simply write the
reconstructed data on the spare space, but treat the current spare track as a member of a
reliability group and perform a RAID write. While the reconstruction process is slightly
more complicated, certain failure modes are excluded.

The Markov model is simple: With spare space corresponding to s disks we have
the normal state (—s), states (—s 4+ 1),...(0) describing the increasing use of spare space
from one spare disk used to all spare disks used and then states (1) to (m) labelled by the
number of reliability groups that are vulnerable.

The state transitions are straightforward, we only need to adjust for the fact that
in states (—s 4+ 1) to (m) not every reliability group contains n disks.

We give the Markov Chains for our small example RAID with one spare in Figure
3.12. We do not give the repair and essential component failure transitions. Notice, that
there are two string failure states. This is necessary to distinguish a loss of a string with or

without an additional failed disk.

39

We discuss the impact of reconstruction, repair and disk failure times in Figure
3.13. Reconstruction time becomes important for excellent MTTDL values even though
the differences between SDS and NDS are not significant. Quick repair gives the RAID
with SDS and superhardened strings formidable reliability. The first knee of the curve
indicates the possibility of essential equipment failure. All repair curves show a steep
MTTDL improvement when the repair time is lowered sufficiently. The influence of disk
MTTF is not as strong. The curve for the super hardened strings flattens because string

and essential component failures are becoming the main failure types.

40

10 30
8]
_ \ __ 20
n @) 4
6]
| _ 4
[a) a]
= = 1
= 44 = 1
= = 10
2
0 — T 7T 0 — T 7T
0 2 4 6 8 10 0 2 4 6 8 10
Reconstruction Time (hours) Reconstruction Time (hours)
200
150
@
g]
L 100
=]
'_
=
50+
0 ——T——T—— T
0 2 4 6 8 10

Reconstruction Time (hours)

Figure 3.9: Impact of Reconstruction Time on the MTTDL for the Classic RAID with NDS

(10 strings, 5 reliability groups, 1 spare)

41

10p

001
50\ 40\ 30\ 20\ 100
OLOEOEOROEO
45N+

R 9,999
% 9990

\

10u+47)

Figure 3.10: Markov Model for the Classic Raid Organization with NDS: 2 Spares, 5 Reli-

ability Groups and 10 Strings.

40
600 -
30
w w
?;/ g 400
20
g 2
E =
= =
200
10
O——T1 7 71 1 1 0 — T T T T
0 2 4 6 8 10 0 2 4 6 8 10
Reconstruction Time (hours) Reconstruction Time (hours)

Figure 3.11: Impact of Reconstruction Time on the MTTDIL for the Classic RAID with

NDS (10 strings, 5 reliability groups, 2 spares)(Super Hardened Strings right.)

42

500 49\ 92 29 A\ 19) 9)
> > >

1 00y .0001

10u

Sting 145Ky
ailure

B9y

Figure 3.12: Markov Model for the Classic Raid Organization with SDS: 1 Spare, 5 Relia-

bility Groups and 10 Strings

43

400 4
60 -
3004
@ @
8 o] g
a Hardened Stings & 2]
= =
= =
= =
20
1004 Super Hardened Strings
0 T T T T] 0 T T T T T
2 4 6 8 10 0 2 4 6 8 10
Reconstruction Time (hours) Reconstruction Time (hours)
800+
1000
= 600 &>
w @2
i Hardened Strings g
a o
|~ 400 =
= =
= = 5009
200
Super Hardened Strings
Soft Str
0 T T T T T 0 T T T T T
0 20 40 60 80 100 20 40 60 80 100
Repair Time (hours) Repair Time (hours)
Super Hardened Strings
1000
w
g
P}
fa)
C 500 4 Hardened Strings
=
Soft Strings
0~ T 1
10000 100000 1000000

Disk MTTF (hours)

Figure 3.13: Impact of Reconstruction Time, Repair Time and Disk MTTF on the MTTDL
for the Classic RAID with SDS (10 strings, 5 reliability groups, 1 spare)

44

track 1 track | ¢; 77
1: 7;2 ig C9 1: ig ig C9
track | 71 13 ¢ track | 71 i,
2: 7;2 (4] 2: ig C9 (4]
(a) track | e; 19 (b) track | ¢ i,
a
3: cy 11 12 3: cy 1 19
track | 72 ¢1 19 track | 72 ¢; W
4. 11 C2 4: il C9 12
track | 79 19 ¢ track | 72 i, WA
5: il (5] H: Cy 11 (5]

Figure 3.14: A Two By Three Disk Array: (a) Fault-Free Data Lay-Out, (b) Data Lay-Out

after Disk Failure

3.4.5 The Level 5 RAID with Distributed Sparing and Almost Complete
Load Balancing

Distributed Sparing of even one disk increases the disk failure tolerance of an
organization with load balancing to reduce the reliability difference between the classic
schemes and load balancing scheme sufficiently, to make the latter ones attractive. Our
results are valid for load balancing schemes, that, like ACATS, do not place two elements
of the same reliability group on the same string or on the same disk during reconstruction
of data from a failed unit. We first investigate the NDS scheme. The RAID tolerates
string failure without data loss if no disk has failed previously. We argue string failure with
previous disk loss in a small example given in Figure 3.14:

Our small example features a disk array with 2 reliability groups and 3 strings.
One reliability group consist of only one information track and one check track whereas
the other has two information tracks and one check track. A blank space indicates a spare
space. To the right, the same disk array has suffered a disk failure, indicated by a filled-in
rectangle. The spare space is used to store the reconstructed data previously stored on the
now failed disk. If string three fails, on which the failed disk is located, then we do not
suffer data loss. However, if string 1 fails, we can suffer data loss, as evidenced by track 5:
two tracks from the same reliability group are located on string 1.

We need to investigate in more detail: We distinguish two kinds of reliability

45

45\
07268\
47,9213\ \

1 11
oy +10y @ o @
)\ 100\
+10;J +11u‘
@ By Failure 01y Faiure
State State

Figure 3.15: Markov Chains for Distributed Sparing with Almost Complete Load Balancing

with Parameters: 1 Spare, m = 5, n = 10 and 1 Spare, m = 10, n = 11.

groups, (1) there is one reliability group which gave up one information track for use as
spare space and (2), there are all the others. In Figure 3.14 the reliability group 1 exemplifies
the first kind and 2 the second. If a reliability group of kind (1) has a track located on the
failed disk, the security of its data did not really change; it is as if the spare track would
have become inaccessible. However, a reliability group of kind (2) will become vulnerable if
it looses a track due to the disk failure. This track will be reconstructed on the spare track
and be located on the same string as another track of the reliability group. Failure of the
string implies data loss.

The ingredients for data loss at the track level are: (a) a reliability group of kind
(2) looses a track due to the disk failure and (b) the string on which the spare space was
located fails. The probability that a string will lead to data loss at the track level is mT_l . %
= (m — 1)/mn. For a thousand tracks the probability of data loss due to a string failure
is 1 —(1—(m—1)/mn)'%? which is about 1 — 1073 for both of our examples. We will
assume certainty of data loss in our subsequent calculations.

The Markov model contains six non-failure states: The fault-free state, state 0,
describes no component failure, state 1 describes the situation where a disk has failed and
is replaced by the spare space, state 2 portrays circumstances where two disks on different

strings have failed. State 3 depicts two or more disk failures on the same string, state 4

46

represents one disk failure on one and two on another string and finally, state 5 describes
string failure. State 4 excludes data loss, it could be omitted with only a slight loss of
accuracy. States 2 and 3 could then be grouped together.

The state transitions include repair and essential component failure. From the
fault-free state, a disk failure transition leads with marginal probability nmA to state 1,
and a string failure leads with marginal probability nu to state 5. Disk failure in state 1
happens with probability (nm — 1)\ and transitions the system to state 2 with marginal
probability (n — 1)mA and to state 3 with marginal probability (m — 1)A. As we have seen,
failure of the string on which the already failed disk is located, does not lead to data loss:
we have a transition from state 1 to state 5 with probability u. The other string failures
are fatal and are represented by a transition from state 1 to the failure state taken with
probability (n — 1)u.

We have already seen that in state 2 a string failure will lead to data loss with
probability undistinguishable from 1. The prospect in case of a further disk failure are
almost as grim. If the third disk failure is located on a different string than the second, we
observe data loss with probability undistinguishable from 1. (The situation is even worse
than the one considered in 3.4.2.) Else, the only scenario for data loss has the second or
third failed disk carry the spare track originally and now a track from reliability group R
and the other one a track from the same reliability group R. If the reliability group is of
kind (1), this scenario cannot occur. To calculate the probability ¢; for this scenario at the
track level, given that we are in state 2, we argue that with probability 2/mn the second
or third disk failure hit the spare track and that with probability 1/m the first failed disk

carried a track in the same reliability group as the third or second failed disk. We have

2
Gt = 2,
For our sample values m = 5 and n = 10 we have ¢ = .004 and for m = 10 and n = 11

g: = .00181818. The global picture is not as encouraging, the data loss probabilities are

¢y = 0.98183 and ¢, = 0.83795 respectively. To summarize, with marginal probability

(1= gg)(m—1)A
we observe a transition from state 2 to state 4 and with marginal probability

et+np+(g(m—-1)+(n—1)m-1)A

47

a transition to the failure state.

A string failure in state 3 is fatal, if it does not afflict the already compromised
string, in which case we observe a transition to state 5 with marginal probability p. Failure
of an additional disk on the same string does not change the picture. As we have seen before,
failure of two disks on different strings is tantamount to data loss. We observe a transition
to failure state with marginal probability (n — 1)u 4+ (n — 1)mA. Any further component
failure in state 4 leads to data loss, we observe the corresponding transition with marginal
probability npg 4+ (nm — 3)A. Similarly, any further component failure in state 5 leads to
data loss, the transition happens with marginal probability (n — 1)u 4 (n — 1)mA.

We represent the Markov chain in numerical form for our base examples in Figure
3.15. As in the previous section, we can enhance reliability at the cost of performance by
SDS: We protect reconfigured data from a failed disk by updating the check information
of the reliability group in which this information was written. (Of course, if the spare
track is in the same reliability group as the replaced one, then the check information is not
updated.) Then the reconfigured data can only be lost if the host reliability group (which
carries the spare track) suffers data loss itself. Hence, as long as there is sufficient spare
space, the system tolerates disk loss and, after spare space is exhausted, behaves just like
the RAID with almost complete address translation. We present the full Markov chain
(including essential component failure and repair transitions) for our example RAID with
one disk worth of spare space in Figure 3.17. We distinguish only four states: the fault-free
state -1, state 0, which depicts loss of one disk and full use of the spare, the vulnerable
state, in which one or more disks on the same string have failed, and the string failure
state, which actually only describes the effects of string failure occurring in the fault-free
state. The number of disks left distinguishes between the string failure and the vulnerable
state. In the vulnerable state on average (n — 1)(nm — 1)m/nm disks are left outside the
compromised string, whereas the number in the string failure state is slightly higher with
(n—1)m. We could fold both states into one with only slight inaccuracy. Again, we present

a sensitivity anlysis in Figure 3.18 using the parameters in Table 2.1

48

100+
Super Hardened Strings 1000
— — Super Hardened Strings
@) ()
g g
_| |
= =
E %0 k500
= = Hardened Strings
1 Hardened Siriags i
\ Soft Strings
0 Soft Strings 0
T T T T T T T T T T T T T T T T
0 2 4 6 8 10 0 20 40 60 100

Reconstruction Time (hours)

1000

500

MTTDL (years)

Repair Time (hours)

Super Hardened Strings

Hardened Strings

__— sotsiings -

10000

L T
100000 1000000
Disk MTTF (hours)

Figure 3.16: Impact of Reconstruction Time, Repair Time and Disk MTTF on the ACATS

RAID with NDS (1 Spare)

49

Stnng Failure
Hn-L)pt nnk

Figure 3.17: Markov Chain for Safe Distributed Sparing with Almost Complete Load Bal-

ancing with 1 Spare.

50

100 — syper Hardened Strings 1000 | Super Hardened Strings

50+ 500 | Hardened Strings

MTTDL (years)
MTTDL (years)

Hard String

K Soft String!

Soft String
0 T I . I T T . I T I 0 T : 7 : : -
0 2 4 6 8 10 0 20 40 60 80 100

Reconstruction Time (hours) Repair Time (hours)

Super Hardened Strings
1000 +
@
g
|
=
i~ 5004
=
0 Soft Strings
10000 100000 1000000

Repair Time (hours)

Figure 3.18: Impact of Reconstruction Time, Repair Time and Disk MTTF on the ACATS
RAID with SDS (1 Spare)

51

3.4.6 Classic Level 5 RAID with a String of Spares

This organization shows very similar resilience as the organizations using dis-
tributed disk sparing with SDS. Our analysis uses a large Markov model; this approach
reduces many difficult transition rate calculations to careful accounting, but is more sus-
ceptible to numerical error because of the matrix size in the MTTDL calculation, even
though we did not observe any indications of numerical error in our calculations. In addi-
tion, the approach is not amenable to changing RAID dimensions and the resulting Markov
models become successively and quickly more complicated as the one for a string of 5 spares
is contained in the one with S + 1 spares.

If S = 1 then we capture the number of vulnerable reliability groups in a two-
dimensional index (7, j) where the first coordinate 7 indicates whether an additional disk in
the reliability group that saw the first disk failure has failed (¢ = 1) or not (¢ = 0). The
second coordinate j is the number of vulnerable reliability groups different from the first
one. The sum 7 + j is the total number of vulnerable reliability groups. Because the spare
itself can fail, we have to add a set of states (7) reflecting the number of vulnerable reliability
groups after a string failure. State 0 is to be distinguished from state (0), where the spare
is unavailable, and from state (0,0), where one main disk has failed and is replaced by the
spare. Three additional states depict the effects of main string failure, that is the failure
of a string other than the string of spares: An unused or unusable spare defines state SF1,
state SI'2 describes a string failure situation where data safety depends on the spare and
state SI'3 indicates a string failure, where the spare provides redundance for one reliability
group.

If S = 2 we distinguish two sub-cases (A) or (B) corresponding to the location of
the first two failures in the same reliability group or not. The set of states characterizing
further disk failures is given by a three dimensional index (A, ¢, j)or (B,1,7). The first coor-
dinate distinguishes the location of the first two disk failures, the second coordinate ¢ gives
the number of vulnerable groups among those who use a spare disk and the third coordinate
7 is the number of vulnerable reliability groups among the remaining reliability groups. For
example, state (A,1,2) depicts the situation where first two disks in one reliability group
failed, which were replaced with the two spare disks, in addition, another disk in the same

reliability group has failed and there were two other disk failures in two different reliability

52

groups. We now need to add states that capture the effect of either the failure of the spares’
string or of a spare disk. We therefore replicate the Markov models for one spare disk and
no spare string. In addition, a number of states are needed to describe the impact of string
failure. We need to make distinctions as to what role the spare disks are playing: whether
they are unused or unusable, necessary for the data integrity of a reliability group or merely
providing redundancy.

The multitude of case distinctions renders the calculation of transitions and their
marginal probabilities easy but tedious. We apply our results to the small sample RAID in
Tables 3.4 and 3.5 for the case of one spare disk. As usual, we have the repair transitions
taken with probability p from every non-failure state to the normal state. Similarly, the
essential component failure is depicted in a transition with probability ¢ from each state to
the failure state.

A main string failure failure - will either result in a transition to one of the string
failure states or to the failure state. A main string failure in state 0 results in a transition
to state SF'3 taken with marginal probability nu. Here an arbitrary disk on the failed string
is replicated on the spare. State (0,7) describes vulnerability of ¢ reliability groups different
from the one which first experienced disk failure. Data loss is avoided only if in all 2
reliability groups the failed disk is located on the failing string. In that case, the location of
the first failed disk, which was replaced by the spare disk, determines whether we need the
spare disk for data safety or not. With marginal probability u/n’ the system transitions to
state SF'3, with marginal probability (n— 1),u/ni to state SI'2, and with marginal probability
(1 — n~"*F1)nu to the failure state. In state (1,4) data safety depends on the location of all
failed disks with respect to the failing string. If the failing string contains the first failed
disk, which was replaced by the spare disk, or the other failed disk in this reliability group,
then the string failure is not going to cause data loss in this reliability group and globally
not with probability n~*. In this case we observe a a transition to state SF2 (taken with
marginal probability Qn_iu.) We observe alternatively a transition to the failure state with
marginal probability (n — 2n~1)u. In state (i) the spare disk has become unusable and in
addition, ¢ groups are vulnerable. A transition to state SF'1 takes place with probability
n~"1; and to the failure state with probability (1- ni)n,u. In states SF'1, SF'2 and SF'3 an

additional main string failure will lead to data loss.

53

A main disk failure will transition from state 0 to state (0,0) with marginal prob-
ability nmA. A main disk failure results in a transition from state (0,%) to state (1,¢) with
marginal probability (n—1)A, to state (0,74 1) with marginal probability (m —i—1)n) and
with marginal probability i(n — 1)A to the failure state. It causes a transition from state
SF1 to the failure state with marginal probability (n — 1)mA, from state SF2 to the failure
state with probability ((n — 1)m — 1), as there is one less disk to fail, and from state SF'3
to the failure state with marginal probability (n — 1)(m — 1)\ and from the same state to
state SF'2 with marginal probability (n — 1)A.

A spare disk failure is equivalent to spare’s string failure and induces a state tran-
sition with probability A 4+ p. This events results in a transition from state 0 to state (0).
The loss of the spare transitions the system from state (0,%) into state (i + 1) and from
state (1,7) into the failure state. The event is impossible in states (i) and state SF1. In
state SI'3 it induces a transition to state SF2 and in states SF'1 and SF2 a transition to the
failure state.

We give explicit state transitions for our example in Tables 3.4 and 3.5. We use
these tables for verification of our programs. The state transitions for S = 2 are similarly
given in Tables 3.6 to 3.7. The derivations again are straightforward and we do not give

them here.

State Number

Description

0 0 Normal State

1 (0,0) Main Disk Lost, Spare Used

2 (1,0) Second Disk Failure in Same R.Group
3 (0,1) Main Disk in Other R.Group Lost

4 (1,1) Three Disk Failures

5 (0,2) Three Disk Failures

6 (1,2) Four Disk Failures

7 (0,3) Four Disk Failures

8 (1,3) Five Disk Failures

9 (0,4) Five Disk Failures

10 (1,4) Six Disk Failures

11 (0) Spare Lost

12 (1) Spare Lost and 1 R.Group Vulnerable
13 (2) Spare Lost and 2 R.Groups Vulnerable
14 (3) Spare Lost and 3 R.Groups Vulnerable
15 (4) Spare Lost and 4 R.Groups Vulnerable
16 (5) Spare Lost and 5 R.Groups Vulnerable
17 SF1 Main String Failure, Spare Unusable
18 SE2 Main String Failure, Spare Necessary
19 SF3 M. S. Failure, Spare Provides Redundancy

Table 3.3: States of the Markov Model for the Classic Level 5 RAID with

Spare

54

a String of 1

From To Marginal | Cause
State | State | Probability
0 1 50A Main Disk Failure
0 11 A p Spare Disk or Spare String Failure
0 19 10p Main String Failure
1 2 9 Main Disk Failure
1 3 407 Main Disk Failure
1 12 A p Spare Disk or Spare String Failure
1 18 Iu Main String Failure
1 19 I Main String Failure
2 4 40 Main Disk Failure
2 18 I Main String Failure
2 19 I Main String Failure
2 FS 9\ + 9u Disk or Spare String Failure
3 4 9 Main Disk Failure
3 5 30A Main Disk Failure
3 13 A p Spare Disk or Spare String Failure
3 18 0.9 Main String Failure
3 19 0.1 Main String Failure
3 FS 9\ + 9u Main Disk or Main String Failure
4 6 30A Main Disk Failure
4 18 0.2 Main String Failure
4 FS 18X + 10.8u | Disk or String Failure
5 6 9 Main Disk Failure
5 7 20A Main Disk Failure
5 14 A p Spare Disk or Spare String Failure
5 18 0.09u Main String Failure
5 19 0.01p Main String Failure
5 FS 18X+ 9.9 | Main Disk or Main String Failure
6 8 20A Main Disk Failure
6 18 .02u Main String Failure
6 FS 27X 4+ 10.984 | Disk and String Failure
7 8 9 Main Disk Failure
7 9 10 Main Disk Failure
7 15 A p Spare Disk or Spare String Failure
7 18 0.009u Main String Failure
7 19 0.001p Main String Failure
7 FS 2724 9.991 | Main Disk or Main String Failure

55

Table 3.4: State Transitions in the Markov Model for the Classic Level 5 RAID with a

String of 1 Spare: Part [

From | To Marginal Cause
State | State | Probability
8 10 10 Main Disk Failure
8 18 0.002p Main String Failure
8 FS 36 4+ 10.998u | Disk or String Failure
9 10 9 Main Disk Failure
9 16 A p Spare Disk or Spare String Failure
9 18 .0009u Main String Failure
9 19 .0001p Main String Failure
9 FS 36X 4+ 9.9994 | Main Disk or Main String Failure
10 18 0.0002p Main String Failure
10 FS 45X 4+ 10.99981 | Disk or String Failure
11 12 50A Main Disk Failure
11 17 10p Main String Failure
12 13 407 Main Disk Failure
12 17 I Main String Failure
12 FS 9\ + 9u Main Disk or Main String Failure
13 14 30A Main Disk Failure
13 17 0.1 Main String Failure
13 FS 18X+ 9.9 Main Disk or Main String Failure
14 15 20A Main Disk Failure
14 17 0.01p Main String Failure
14 FS 2724 9.99u Main Disk or Main String Failure
15 16 10 Main Disk Failure
15 17 0.001p Main String Failure
15 FS 36X 4+ 9.9994 | Main Disk or Main String Failure
16 17 0.0001p Main String Failure
16 FS 45X +9.99991 | Main Disk or Main String Failure
17 FS 457 + 9 Main Disk or Main String Failure
18 FS 450+ 10u Disk or String Failure
19 18 10A + i Disk or Spare String Failure
19 FS 36 4+ 9 Disk or String Failure

56

Table 3.5: State Transitions in the Markov Model for the Classic Level 5 RAID with a

String of 1 Spare: Part II

57

State Number | Description

0 0 Normal State

1 1 One Failed Disk, Data Restored on Spare
2 (A,0,0) Two Failed Disk in Same R.Group, Spares Used
3 (A,1,0) Second Disk Failure in Same R.Group

4 (A,0,1) Main Disk in Other R.Group Lost

5 (A,1,1) Four Disk Failures

6 (A,0,2) Four Disk Failures

7 (A,1,2) Five Disk Failures

8 (A,0,3) Five Disk Failures

9 (A,1,3) Six Disk Failures

10 (A,0,4) Six Disk Failures

11 (A,1,4) Seven Disk Failures

12 (B,0,0) Two Failed Disks in Different R.Groups, Spares Used
13 (B,1,0) Three Disk Failures

14 (B,0,1) Three Disk Failures

15 (B,2,0) Four Disk Failures

16 (B,1,1) Four Disk Failures

17 (B,0,2) Four Disk Failures

18 (B,2,1) Five Disk Failures

19 (B,1,2) Five Disk Failures

20 (B,0,3) Five Disk Failures

21 (B,2,2) Six Disk Failures

22 (B,1,3) Six Disk Failures

23 (B,2,3) Seven Disk Failures

24 (a) One Spare Lost, All Main Disks Functional

[\
(o3

1 Main Disk And One Spare Lost, Other Spare Used
Second Disk Failure in Same R.Group

Main Disk in Other R.Group Lost

Three Disk Failures

Three Disk Failures

Four Disk Failures

Four Disk Failures

Five Disk Failures

Five Disk Failures

Six Disk Failures

DN DN DO
o0 ~1 O

LW W W W
W N = O

DO
NeJ
SN TN TN TN TN N N N N N
e
N
NN N N N NN

w
I~

Table 3.6: States of the Markov Model for the Classic Level 5 RAID with a String of 2

Spares: Part 1

State Number

Description

35
36
37
38
39
40

Both Spares Lost, All Main Disks Functional
Spares Lost and 1 R.Group Vulnerable
Spares Lost and 2 R.Groups Vulnerable
Spares Lost and 3 R.Groups Vulnerable
Spares Lost and 4 R.Groups Vulnerable
Spares Lost and 5 R.Groups Vulnerable

41
42
43
44
45
46
47

Main String Failure, Spares Unused or Unusable

SEEEEE

. Str.
. Str.
. Str.
. Str.
. Str.
. Str.

Fail., 1 Spare Unusable, 1 Necessary

Fail., 1 Sp. Unusable, 1 Provides Redundancy
Fail., 2 Sp. Necessary

Fail., 1 Sp. Necessary, 1 Prov. Redundancy
Fail., 2 Spares Provide Redundancy

Fail,, 1 of 2 Spares Necessary

58

Table 3.7: States of the Markov Model for the Classic Level 5 RAID with a String of 2

Spares: Part 11

From | To Marginal | Cause
State | State | Probability
0 1 50 Main Disk Failure
0 24 2A Spare Disk Failure
0 35 I Spare String Failure
0 46 104 Main String Failure
1 2 9 Main Disk Failure
1 12 40 Main Disk Failure
1 25 27 Spare Disk Failure
1 45 Iu Main String Failure
1 46 7 Main String Failure
1 36 I Spare String Failure
2 3 8\ Main Disk Failure
2 4 40 Main Disk Failure
2 26 27 Spare Disk Failure
2 44 8u Main String Failure
2 47 24 Main String Failure
2 FS I Spare String Failure
3 5 40 Main Disk Failure
3 44 3u Main String Failure
3 FS 9 + 8u Disk or String Failure
4 5 8\ Main Disk Failure
4 6 30\ Main Disk Failure
4 44 0.8u Main String Failure
4 47 0.2u Main String Failure
4 28 2\ Spare String Failure
4 FS 9N+ 10p Main Disk or String Failure
5 7 307 Main Disk Failure
5 44 0.3u Main String Failure
5 FS 18X+ 10.7p | Disk or String Failure
6 7 8\ Main Disk Failure
6 8 20 Main Disk Failure
6 30 2) Spare String Failure
6 44 0.08u Main String Failure
6 47 0.02p Main String Failure
6 FS 18X+ 10.9x | Main Disk or String Failure
7 9 20 Main Disk Failure
7 44 0.03u Main String Failure
7 FS 27X 4+ 10.97p | Disk or String Failure

59

Table 3.8: State Transitions in the Markov Model for the Classic Level 5 RAID with a

String of 2 Spares: Part I

60

From To Marginal Cause

State | State | Probability
8 9 8A Main Disk Failure
8 10 10X Main Disk Failure
8 32 2\ Spare String Failure
8 44 0.008 Main String Failure
8 47 0.0024 Main String Failure
8 FS 2724+ 10.99p | Main Disk or String Failure
9 11 10 Main Disk Failure
9 44 0.003 4 Main String Failure
9 FS 36X 4+ 10.997u | Disk or String Failure
10 11 8\ Main Disk Failure
10 34 2\ Spare String Failure
10 44 0.0008u Main String Failure
10 47 0.0002p Main String Failure
10 FS 36X 4+ 10.999u | Disk or String Failure
11 44 0.0003p Main String Failure
11 FS 45X 4+ 10.9997p | Disk or String Failure
12 13 18X Main Disk Failure
12 14 307 Main Disk Failure
12 44 8.1u Main String Failure
12 45 1.8u Main String Failure
12 46 0.1 Main String Failure
12 27 2A Spare Disk Failure
12 37 Iz Spare String Failure
13 15 9\ Main Disk Failure
13 16 30A Main Disk Failure
13 44 1.8u Main String Failure
13 45 0.2 Main String Failure
13 FS 9\ + 9u Disk or String Failure
14 16 18X Main Disk Failure
14 17 20A Main Disk Failure
14 29 2A Spare Disk Failure
14 38 Iz Spare String Failure
14 44 0.81u Main String Failure
14 45 0.18u Main String Failure
14 46 0.01p Main String Failure
14 FS 9N+ 9u Main Disk or Main String Failure

Table 3.9: State Transitions in the Markov Model for the Classic Level 5 RAID with a

String of 2 Spares: Part 11

From | To Marginal Cause

State | State | Probability
15 18 30A Main Disk Failure
15 44 0.4p Main String Failure
15 FS 18X+ 10.6p | Disk or String Failure
16 18 9\ Main Disk Failure
16 19 20A Main Disk Failure
16 30 A Spare Disk Failure
16 44 0.18u Main String Failure
16 45 0.02u Main String Failure
16 FS 18X+ 10.8u | Disk or String Failure
17 19 18X Main Disk Failure
17 20 10 Main Disk Failure
17 32 2A Spare Disk Failure
17 39 I Spare String Failure
17 44 0.081 4 Main String Failure
17 45 0.018u Main String Failure
17 46 0.001p Main String Failure
17 FS 18X+ 9.9 Main Disk or Main String Failure
18 21 207 Main Disk Failure
18 44 0.04p Main String Failure
18 FS 27X 4+ 10.96p | Disk or String Failure
19 21 9\ Main Disk Failure
19 22 10 Main Disk Failure
19 32 A Spare String Failure
19 44 0.018u Main String Failure
19 45 0.0024 Main String Failure
19 FS 27X 4+ 10.98 | Disk or String Failure
20 22 18X Main Disk Failure
20 33 2A Spare Disk Failure
20 40 Iz Spare String Failure
20 44 0.0081p Main String Failure
20 45 0.0018u Main String Failure
20 46 0.0001p Main String Failure
20 FS 2724+ 9.991 | Main Disk or Main String Failure
21 23 10 Main Disk Failure
21 44 0.004 4 Main String Failure
21 FS 36 4+ 10.9964 | Disk or String Failure

61

Table 3.10: State Transitions in the Markov Model for the Classic Level 5 RAID with a

String of 2 Spares: Part 111

From | To Marginal Cause
State | State | Probability
22 23 9 Main Disk Failure
22 34 A Spare String Failure
22 44 0.0018u Main String Failure
22 45 0.0002p Main String Failure
22 FS 36 4+ 10.998u | Disk or String Failure
23 44 0.0004u Main String Failure
23 FS 45X 4+ 10.9996, | Disk or String Failure
24 25 50A Main Disk Failure
24 35 A p Spare Disk or Spare String Failure
24 43 10p Main String Failure
25 26 9 Main Disk Failure
25 27 407 Main Disk Failure
25 36 A p Spare Disk or Spare String Failure
25 42 Iu Main String Failure
25 43 I Main String Failure
26 28 40 Main Disk Failure
26 42 I Main String Failure
26 43 I Main String Failure
26 FS 9\ + 9u Disk or Spare String Failure
27 28 9 Main Disk Failure
27 29 30A Main Disk Failure
27 37 A p Spare Disk or Spare String Failure
27 42 0.9 Main String Failure
27 43 0.1 Main String Failure
27 FS 9\ + 9u Main Disk or Main String Failure
28 30 30A Main Disk Failure
28 42 0.2 Main String Failure
28 FS 18X + 10.8u Disk or String Failure
29 30 9 Main Disk Failure
29 31 20A Main Disk Failure
29 38 A p Spare Disk or Spare String Failure
29 42 0.09u Main String Failure
29 43 0.01p Main String Failure
29 S 18X 4+ 9.9 x mu | Main Disk or Main String Failure
30 32 20A Main Disk Failure
30 42 .02u Main String Failure
30 FS 27X 4+ 10.98u | Disk and String Failure

62

Table 3.11: State Transitions in the Markov Model for the Classic Level 5 RAID with a

String of 2 Spares: Part IV

From | To Marginal Cause
State | State | Probability
31 32 9 Main Disk Failure
31 33 10 Main Disk Failure
31 39 A p Spare Disk or Spare String Failure
31 42 0.009u Main String Failure
31 43 0.001p Main String Failure
31 FS 2724 9.99u Main Disk or Main String Failure
32 34 10 Main Disk Failure
32 42 0.002p Main String Failure
32 FS 36 4+ 10.998u | Disk or String Failure
33 34 9 Main Disk Failure
33 40 A p Spare Disk or Spare String Failure
33 42 .0009u Main String Failure
33 43 .0001p Main String Failure
33 FS 36X 4+ 9.9994 | Main Disk or Main String Failure
34 42 0.0002p Main String Failure
34 FS 45X 4+ 10.99981 | Disk or String Failure
35 36 50A Main Disk Failure
35 41 104 Main String Failure
36 37 40 Main Disk Failure
36 41 I Main String Failure
36 FS 9\ + 9u Main Disk or Main String Failure
37 38 30A Main Disk Failure
37 41 0.1p Main String Failure
37 FS 18X+ 9.9 Main Disk or Main String Failure
38 39 20A Main Disk Failure
38 41 0.01p Main String Failure
38 FS 2724 9.99u Main Disk or Main String Failure
39 40 10 Main Disk Failure
39 41 0.001p Main String Failure
39 FS 36X 4+ 9.9994 | Main Disk or Main String Failure
40 41 0.0001p Main String Failure
40 FS 45X +9.9999, | Main Disk or Main String Failure
41 FS 457 + 9 Main Disk or Main String Failure
42 FS 450+ 10u Disk or String Failure
43 41 A Spare Disk or String Failure
43 42 9 Main Disk Failure
43 FS 36\ 4+ 9 Disk or String Failure
44 FS 450+ 10u Disk or String Failure

63

Table 3.12: State Transitions in the Markov Model for the Classic Level 5 RAID with a

String of 2 Spare: Part V

64

From To Marginal | Cause
State | State | Probability
45 44 10 String Failure
45 FS 36X+ 10u | Disk or String Failure
46 41 A p Spare Disk or Spare String Failure
46 44 9 Main Disk Failure
46 FS 36\ 4+ 10u | Disk or String Failure

Table 3.13: State Transitions in the Markov Model for the Classic Level 5 RAID with a
String of 2 Spare: Part VI

] Super Hardened String
Super Hardened Strings 1000

]| Hardened String

D

Q

o
|

400

MTTDL (years)
8
1

MTTDL (years)

200

O‘ZW I U 0 - 1 T T 1
0 2 4 6 8 10 0 20 40 60 80 100
Reconstruction Time (hours) Repair Time (hours)

1000

MTTDL (years)
1)
T

Hardened Strin,

Soft Strings
10000 100000 1000000
Disk MTTF (hours)

Figure 3.19: Impact of Reconstruction Time, Repair Time, Disk MTTF on the MTTDL of
the RAID with ACATS and Distributed String Sparing.

65

3.4.7 RAID with a String of Spares and Almost Complete Load Balancing

Almost Complete Load Balancing in the form of ACATS gives us performance
advantages in the disk failure case, while the presence of spare disks presents us with good
failure reliability.

Preliminary Calculations and Implementation of Assignment of Spares:

We assume that the number of spares is smaller than the number of disks in a main string.
Even if in the event of a main string failure all spares are used to regenerate data on this
string, there is no noticeable improvement of data security over a lazy procedure, which does
not use reconfiguration. We validate this with our two examples assuming that we have
two spares. The disk array with 10 strings with 5 disks sees its data integrity maintained
in the event of a string failure followed by a disk failure with probability 0 without use of

320 with use of spare disks to replace some of the failed

spare disks and with probability 10~
strings information. The numbers for the larger array are 0.0 and 10~7°0 instead. These
numbers are based on a random addressing scheme, whereas - of course - we only use a fixed
addressing scheme, whose disk assignments look random. We have to interpret our numbers
as saying that it would be very difficult to design an addressing scheme, for which the use
of spares to replace some of the disks of a failed string noticeably improves reliability, while
not at the same time limit the performance gains of the scheme.

The impact of two disk failures in the same string is far less severe than the impact
of two disk failures in different strings. If we assume, that no spares are available to replace
data, then we can say, that in the first case data loss cannot eoccur, whereas in the latter
case data loss is practically unavoidable. To substantiate this statement, we use our two
examples. In the 5 x 10 disk array, the data survival probability is approx. 107%7 and in
the 10 x 11 disk array, it is 1076, But as we are using a concrete disk addressing scheme,
these number really denote certainty.

Because of this fact, our scheme does not use the naive spare assignment policy,
which assigns spares to replace failed disk in order and then never changes this assignment.
True enough, reassigning spares impacts performance negatively, but as the reassignment
period can be relatively long, this impact is limited. Qur reassignment policy is to minimize
the number of strings, which are impacted by data failure, without a spare replacing the

lost disk’s data.

66

The implementation of this scheme is not difficult because component failures occur
one at a time. As we have seen, a main string failure cannot be addressed successfully with
spares. We assign spares to replace string information only to improve performance and limit
the extent of data loss, not its chance of occurring, in the event of further failures. For disk
failures, we first use spares to replace lost data until all spare space is used. Occasionally,
survival chances are increased by reassigning spares.

The Markov Model

We capture the impact of disk failures by using a “Failure Pattern” to encode the relevant

110

003 describes a situation with five disk failures.

information. For example, the symbol

The upper line gives the location of failed disks which are replaced by spares, the lower
line the one of failed disks not replaced by spares. Columns indicate strings, but as the
order of the string is not relevant, we order strings first by the number of spares used and
then by the number of failed disks without replaced data. In our example, there are 2
strings with one disk failure and one with 3 disk failures. The latter ones’ data are not
reconfigured on spares. As these are in one string, data loss has not occurred. The lower
string representing disk failures without replacement by spares can only contain one nonzero
number. To illustrate our procedure, an explicit example is calculated in Table 3.14 and
3.15 for the 5 x 10 RAID with a string of two spares. Failure Patterns are only sufficient

to describe main disk failure, to indicate spare disk failure, we amend the descriptor by the

number of failed spare disks. Thus |7 | 1|describes the failure of one spare disk.

For certain failure patterns we will reassign the spares to maximize resilience
against further disk loss. We capture these cases in Table 3.16 for our example. The im-
provement is marginal, even for larger number of spares, as the system enters the relevant
states only seldom.

We present the results of a sensitivity analysis in Figures 3.20 and 3.21. The

parameters are given in Table 2.1.

State Number

Description

0

Normal State

—_

1 Failed Main Disk

2 Failed Main Disks In Same String
2 Failed Main Disks In Different Strings

. .

[l S o=

.|O|H|w D|.|c>|w o= |clo
. .

3 Failed Main Disks
3 Failed Main Disks
3 Failed Main Disks

O 00 NS Ot ke W N

4 Failed Main Disks
4 Failed Main Disks
4 Failed Main Disks
4 Failed Main Disks

HH
—_]
Q=

DO [=

o | 82 812

—_ =
w DN
|28

—
sy
—
=
o

5 Failed Main Disks
5 Failed Main Disks
5 Failed Main Disks
5 Failed Main Disks

—_ =
(@) (&3]
ol {15

H
-~
-
|H
o

6 Failed Main Disks
6 Failed Main Disks
6 Failed Main Disks

—

oo
)
o

—

NeJ
—
—
o

7 Failed Main Disks
7 Failed Main Disks

67

Table 3.14: States of the Markov Model for the Level 5 RAID with a String of 2 Spares and

Almost Complete Load Balancing

State Number | Description

20 911 1 Spare Disk Failure

21 % | 1 1 Spare and 1 Main Disk Lost

22 % | 1 1 Spare and 2 Main Disks Lost

23 % | 1 1 Spare and 2 Main Disks Lost

24 % | 1 1 Spare and 3 Main Disks Lost

25 o1 1 Spare and 3 Main Disks Lost

26 T]1 1 Spare and 4 Main Disks Lost

27 % |1 1 Spare and 4 Main Disks Lost

28 % |1 1 Spare and 5 Main Disks Lost

29 % | 1 1 Spare and 5 Main Disks Lost

30 % | 1 1 Spare and 6 Main Disks Lost

31 312 2 Spares Lost

32 % | 2 2 Spares And 1 Main Disk Lost

33 % | 2 2 Spares And 2 Main Disk Lost

34 212 2 Spares And 3 Main Disk Lost

35 312 2 Spares And 4 Main Disk Lost

36 912 2 Spares And 5 Main Disk Lost

37 FMS Failed Main String, 2 Spares necessary
38 FMS Failed Main String, 1 Spare necessary
39 FMS Failed Main String, No Spares used

68

Table 3.15: States of the Markov Model for the Level 5 RAID with a String of 2 Spares and

Almost Complete Load Balancing

Original New New
Failure State Failure
Pattern | Number | Patterns

11
10

20
5 01

Table 3.16: Failure Patterns of the Markov Model for the Level 5 RAid with a String of 2

Spares and Almost Complete Load Balancing, that are not realized due to Reassignment

of Spares.

From To Marginal | Cause

State | State | Probability
0 1 50A Main Disk Failure
0 20 2A Spare Disk Failure
0 39 11p String Failure
1 2 4A Main Disk Failure
1 3 45 Main Disk Failure
1 21 2A Spare Disk Failure
1 32 Iz Spare String Failure
1 38 9u Main String Failure
1 39 I Main String Failure
2 4 3\ Main Disk Failure
2 5 45 Main Disk Failure
2 22 2A Spare Disk Failure
2 33 Iz Spare String Failure
2 37 9u Main String Failure
2 39 I Main String Failure
3 5 8\ Main Disk Failure
3 6 40 Main Disk Failure
3 23 2A Spare Disk Failure
3 37 Sp Main String Failure
3 38 24 Main String Failure
3 FS I Spare String Failure
4 7 2\ Main Disk Failure
4 24 2A Spare Disk Failure
4 34 Iz Spare String Failure
4 37 9u Main String Failure
4 39 I Main String Failure
5 8 4N Main Disk Failure
5 FS 452 + 11p | Disk And String Failure
6 10 4N Main Disk Failure
6 37 7 Main String Failure
6 FS 45X + 10p | Disk or String Failure
7 11 A Main Disk Failure
7 26 2A Spare Disk Failure
7 35 Iz Spare String Failure
7 39 I Main String Failure
7 FS 457 + 9 Main Disk or Main String Failure

69

Table 3.17: State Transitions in the Markov Model for the Classic Level 5 RAID with a

String of 1 Spare: Part [

From To Marginal | Cause

State | State | Probability
8 12 3\ Main Disk Failure
8 37 Iz Main String Failure
8 39 I Spare String Failure
8 FS 457 + 9 Disk or Main String Failure
9 13 2\ Main Disk Failure
9 27 A Spare Disk Failure
9 38 I Main String Failure
9 FS 45X + 10p | Disk or String Failure
10 14 3\ Main Disk Failure
10 37 Iz Main String Failure
10 FS 45X + 10p | Disk or String Failure
11 28 2A Spare Disk Failure
11 39 24 Main or Spare String Failure
11 FS 457 + 9 Main Disk or Main String Failure
12 15 2\ Main Disk Failure
12 37 I Main String Failure
12 FS 45X + 10p | Disk or String Failure
13 16 A Main Disk Failure
13 29 A Spare Disk Failure
13 38 Iz Main String Failure
13 FS 45X + 10p | Disk or String Failure
14 17 2\ Main Disk Failure
14 37 Iz Main String Failure
14 FS 45X + 10p | Disk or String Failure
15 18 A Main Disk Failure
15 37 I Main String Failure
15 FS 451 + 11p | Disk or String Failure
16 30 A Spare Disk Failure
16 38 7 Main String Failure
16 FS 45X + 10p | Disk or String Failure
17 19 A Main Disk Failure
17 37 I Main String Failure
17 FS 45X\ + 10p | Disk or String Failure
18 37 I Main String Failure
18 FS 45X + 10p | Disk or String Failure
19 37 7 Main String Failure
19 FS 45X + 10p | Disk or String Failure

70

Table 3.18: State Transitions in the Markov Model for the Classic Level 5 RAID with a

String of 1 Spare: Part II

From To Marginal | Cause
State | State | Probability
20 21 50A Main Disk Failure
20 31 A p Spare Disk or Spare String Failure
20 39 104 Main String Failure
21 22 4N Main Disk Failure
21 23 45 Main Disk Failure
21 32 A p Spare Disk or Spare String Failure
21 37 I Main String Failure
21 38 Iu Main String Failure
22 24 3 Main Disk Failure
22 33 A p Spare Disk or Spare String Failure
22 37 I Main String Failure
22 FS 450 + 9 Main Disk or Main String Failure
23 25 4N Main Disk Failure
23 38 I Main String Failure
23 FS 45X\ + 10u | Disk or String Failure
24 26 2 Main Disk Failure
24 34 A p Spare Disk or Spare String Failure
24 37 I Main String Failure
24 FS 457 + 9 Main Disk or Main String Failure
25 27 3 Main Disk Failure
25 38 I Main String Failure
25 FS 45\ + 10u | Disk or String Failure
26 28 A Main Disk Failure
26 35 A p Spare Disk or Spare String Failure
26 37 I Main String Failure
26 FS 457 + 9 Main Disk or Main String Failure
27 29 2 Main Disk Failure
27 38 I Main String Failure
27 FS 45X + 10u | Disk or String Failure
28 36 A Spare Disk or Spare String Failure
28 37 I Main String Failure
28 FS 457 + 9 Main Disk or Main String Failure
29 30 A Main Disk Failure
29 38 I Main String Failure
29 FS 45\ + 10u | Disk or String Failure

71

Table 3.19: State Transitions in the Markov Model for the Classic Level 5 RAID with a

String of 1 Spare: Part III

From To Marginal | Cause
State | State | Probability
30 38 Iz Main String Failure
30 FS 45X + 10p | Disk or String Failure
31 32 50A Main Disk Failure
31 39 10p Main String Failure
32 33 4N Main Disk Failure
32 39 Iz Main String Failure
32 FS 457 + 9 Main Disk or Main String Failure
33 34 3\ Main Disk Failure
33 39 I Main String Failure
33 FS 457 4+ 9 Main Disk or Main String Failure
34 35 22 Main Disk Failure
34 39 7 Main String Failure
34 FS 457 4+ 9u Main Disk or Main String Failure
35 36 A Main Disk Failure
35 39 I Main String Failure
35 FS 457 + 9u Main Disk or Main String Failure
36 S 450 4+ 9 Main Disk Failure
37 FS 451 + 10 | Main Disk or String Failure
38 FS 451 + 10p | Disk or String Failure
39 FS 457 + 9 Disk or Main String Failure

72

Table 3.20: State Transitions in the Markov Model for the Classic Level 5 RAID with a

String of 1 Spare: Part IV

73

150

Super Hardened Strings
1000
__ 100 —
@ . 0
§ \ Super Hardened Strings g
> > .
3 o Hardened Strings
? 2
E = 500
= 50 =
Hardened Strings
YV
Soft Strings
0 T T T T T T T T T T 0 ;
0 2 4 6 8 10 0 20 40 60 80 100
Repair Time (hours) Repair Time (hours)
Super Hardened Strings
1000
w
g
.
2
. 500
=
0-
10000

Disk MTTF (hours)

Figure 3.20: Impact of Reconstruction Time, Repair Time, Disk MTTF on the MTTDL of
the RAID with ACATS and a String of one Spare.

74

X] Super Haredened Strings
1 Super Hardened Strings]
1000
600 —
w w
g g i
> 400 >
- -
= =
= £ 500
= =
200
Hardened Strings
Har Strings
0 0 — T T 1
0 2 4 6 8 10 0 20 40 60 80 100
Reconstruction Time (hours) Repair Time (hours)

Super Hardened Strings
1000
w
g
|}
8
500
=
0-
10000 100000 1000000

Disk MTTF (hours)

Figure 3.21: Impact of Reconstruction Time, Repair Time, Disk MTTF on the MTTDL of
the RAID with ACATS and a String of two Spares.

75

0000000 0000000 0000000
O000000 ©OOOOOD OOOOOO0O
0000000 |.OOOOO) O00000O0
D
D

0000000 00000 0000000
0000000 ©COOOOO O00000O0
(a) (b) ()

Figure 3.22: Partitioning Example

3.4.8 Classical Level 5 RAID with a Distributed Spare String

(a) Spare Assignment Policy: Our organization consists of n strings with m disks. At
the logical level, one of the strings is a check string, another is the string of spares and
the remaining n — 2 are information strings. We use our standard addressing scheme and
permute disk addresses inside a reliability group. We can use a single cyclic permutation.
The redundancy is high enough to guarantee data integrity against two string failures,
against one string and one disk failure and against at least m 4 1 disk failures.

We achieve this redundancy using a generous spare allocation policy. If a disk fails,
we use the spare space in the reliability group in which the disk is located to reconstruct its
data. If a second disk in the same reliability group fails, we use the spare space of another
reliability group to hold its data and so on. If, however, a disk in a reliability group, that
“loaned” its spare space to another group, is lost, then we “call in the loan” and reconfigure
the data of this last disk on the local spare space and the previously hold data on another
free spare space. This seemingly complicated clause increases the resilience against disk
failure and really involves at most copying the spare space contents before we overwrite

them with new reconstructed data.

(b) Partitions: The first m failed disks see their data replaced in the spare space. If
z1 disks among these are located in the first reliability group, then the spare space of z;
reliability groups is used for the replacement of the disks’ data. We accordingly partition
the reliability groups in partitions; the spare space of the members of each partition is used

to replace disk data of one of the members of the partition, which we call the leader of the

76

track | a1 as a3 track | ¢; ™ = m

1: bl bg b3 1: bl bg bg as

1 C9 C3 (4] C9 C3 a9

track a1 Gy as track | ¢z ™ =

(a) 2: bl b2 bg (b) 2: a9 bl b2 bg
C1 C9 C3 ay (4] C2 C3

track | as ar a track | ¢z ™ =

3: b3 bl b2 3: b3 as bl bg

C3 (4] C9 C3 as Cc1 C9

Figure 3.23: A Three by Four Disk Array: (a) Normal Data Lay-Out (b) Data Lay-Out
after 3 Disk Failures

partition. (Loosely, we talk of a partitioning of the disk array.) We can always simplify
our illustrations by assuming that the partitions consist of neighboring reliability groups
with the leader being the highest, though we use of course a first-come-first-served policy.
With additional disk failures, partitions become “vulnerable” and are subject to further
subdivision.

We illustrate partitioning in Figure 3.4.8. The left figure depicts 5 disk failure in a
disk array with 5 reliability groups. Three of these disk failures were located in one and two
in another reliability group. These groups, together with the ones whose spare space used
to replace the failed disks, make up the two partitions of the array, represented symbolically
by the two boxes. The next two figures show the effect of an additional disk failure in the
larger partition. If the disk failure is in another reliability group (Middle of Figure 3.4.8)
the partition is subdivided. Otherwise, however, the big partition is retained. (Right of
Figure 3.4.8).

We illustrate our discussion in Figure 3.23. Here we show the data lay-out in a
small disk array with three reliability groups of four disks each. Part (a) illustrates the
normal lay-out and part (b) after the failure of three disks.

In general, if z; disks have failed in reliability group ¢, it becomes the leader of a
partition of x; reliability groups. If a further disk in the same reliability group fails, and if
no additional spare space can be allocated, then the reliability group becomes vulnerable,

one step removed from data loss. In our example, all disks in the first reliability group will

77

be lost. We observe, that any further disk loss in the partition will actually lead to data
loss in the first reliability group.

If instead the first additional disk failure is in another reliability group in the same
partition, then the partition is split into two; one of the two partitions will consist of just
the reliability group with the additional disk failure and the other one encompasses all the
other groups. The original leader is now vulnerable, as it lost one disk worth of spare space.
We can observe, that any further disk loss in the partition will loose some of the leader’s
reconstructed data and lead to data loss. (See Figure 3.23.) Only a disk loss in the small
reliability group will avoid data loss and instead render it vulnerable. Then any further
disk loss amounts to data loss.

We can now give the probability that [additional disk failures in the original
partition will lead to data loss. As we have seen, data loss will occur either with loss of the
second or third disk. We calculate the probability for data loss with two additional disk
failures by counting the number of having one disk fail in a different reliability group and
the next one in the same reliability group as the first one. We formulate the answer in a

theorem for easier reference:

Theorem 5 The data failure probability of data loss given | additional failures in a partition

with x reliability groups (and x failed disks) is
p(z,l) = 0 forl=0o0rl=1

z(n—1)
2

p(z,2) = 1—(z—=1)n-(n—1)-

3
~—~
3
—~—
~—
l

1 for 1> 3.

The dependence on z in the above formula shows that the location of the first m
disk failures is important. We illustrate the fact by giving in tabular form the data loss
probabilities for two failed disk in a partition for our two running example arrays; the first
one contains 5 reliability group with nine information disks, one check and one spare disk,
the second one contains 10 reliability groups with ten information disks, one check and one

spare disk.

78

z | pau(z)
1 [1.000000
= 3 | 0.500000
1 1.000000
4 | 0.581395
2 | 0.421053
(a) (b)|| 5 | 0.644444
3 | 0.494253
6 | 0.692308
4 | 0.576923
5 | 0.640816 7 10.729323
' 8 | 0.758621
9 | 0.782313
10 | 0.801835

Figure 3.24: Data loss probability pgi(z) for the failure of two additional disks in a partition
with z reliability group for the two example arrays: (a) The 5 x 11 array. (b) The 10 x 12

array.

(d) The Probability Space of the First m Disk Failures: The failure patterns form
a probability space

A(m) ={(z1,22,...,%m) : Z:xz =m}

with probability measure

-1
m

p(‘rla‘r?a"'a‘rm) = H

=1 Z; m

n mn

that gives the chances of this particular pattern occuring given that m disks have failed. In

particular, z; is observed with (hypergeometric) probability

-1
n (m—1)n mn

ZT; m—x; m

(e) Recursive Calculation of Data loss Probabilities from Disk Failures Only:
We can now give a recursive formula for the data loss probability given that m 4/ disks have
failed. We use recursion on numbers F'(s,w,l) where s stands for size and w for weight.
The intuitive meaning of F'(s,w,[) is the relative data loss probability in reliability groups
1 to s when w of the first m disk failures and [/ of the additional disk failures occur in the
first s reliability groups. Thus F(m,m,[) denotes the data loss probability if additionally /
disks have failed.

79

Our formula uses the probabilities p(z,/) in Theorem 5 and the hypergeometric
probabilities p of the preceding paragraph. We first distinguish cases according to z,, the

number of failed disk in reliability group s:

w

F(s,w,l) = Z F(s,w,l|z)p(zs|s, w).

rs=0
Here p(z4|s, w) denotes the probability that z, disks have failed in reliability group s, when

we already know that a total of w have failed in the first s reliability groups:

-1
n (s—1)n sn
p(asls, w) =
Ty w— w

The conditional probabilities F(s,w,l|z) are then calculated by distinguishing

the number of additional disk failure in the partition if 5 # 0.

F(s,w,l2,) =
F(s—1,w,l) Hzs=0
Ym0 0o (V) (P25, 2) + F(s = 1w — 25,1 = A)
—p(zs,) F(s—1,w—z5,1— X)) ifl1<z;<w
p(s,1) if 2, = w.

Here, ¢;,(A\) denotes the probability that A of the additional disk failures are

located in the partition with leader s. This probability is hypergeometric:

von=1) \ [(w=a)m—=1) \[win—-1)\

A = l

QIS()‘) =

The basis of the recursion is given by:

F(1,w,l) = p(w,l).

(f) From Absolute Data loss Probabilities to Transition Probabilities: We col-
lapse the many disk failure states characterized by relevant failure patterns into states
indexed only by the number of failed disks. As we can conclude from the previous dis-

274 and following disk failures can lead to data loss. Hence, the

cussions, only the m +
transition probabilities between the states describing [and [+ 1 disk failures is just the

probability of a disk failure or (mn —1)A, as long as [< m+ 1. For larger [, we have to take

80

the possibility that exactly the [*" disk failure leads to data loss into account. For [> m+1,
the data loss probability Py(l) that [disk failures lead to data loss, is F'(m,m,!) (which
incidentally is 1 for / > 2m.) We denote the probabililty that exactly the [*" disk leads to
data loss with pg (/). If we distinguish according whether the [— 1 disk failure caused data

loss, we can write the probability for data loss for [disk failures as

Pu(l) = Py(l = 1) + pau(1 — Pa)

and hence
Pyu(l)— Py(l-1)
) =
= —="p0-1

Here [ranges between 1 and 2m.

The marginal transition probability from State [— 1 characterized by [— 1 failed

disk without data loss to State [is then
(1 = par())(mn —m —).

We illustrate our results by giving the absolute failure probabilities and relative

failure probabilities for our two running examples in Table 3.21.

(g) Consequences of String Failure: We cannot treat a string failure as failure of m
disks, because the location of the previously failed disks matters and because previously
failed disks can be situated on the failing string. In this section, we calculate the probability
that a string failure does not lead to data loss after previous failure of [disks and that the
resulting state of the RAID is characterized by string failure and additional & failed disks.

Our method consists in a careful case distinction of the partitioning after the first
m disk failures. We first analyze the effects of string failure on a single partition. If the
partition consists of one reliability group with one disk failure, the string failure cannot lead
to local data loss. Depending on whether the failed disk is located on the failing string or
not, this partition contributes zero or one to the count k£ of failed disks outside the failed
string. If a one reliability group partition contains another failed disk, only failure of a
string on which one of the two failed disks are situated will not lead to data loss. The
contribution to k is one.

We examplify the more complicated situation, in which a partition consists of two

reliability groups, in Table 3.25. Failure of a string on which the two already failed disks are

81

Number of | Abs. D.L. Prob. | Rel. D.L. Prob.
Failed Disks Py Pdl
6 0.000000 0.000000
(a) 7 0.190771 0.190771
8 0.502666 0.385422
9 0.791667 0.581100
10 0.953247 0.775588
Number of | Abs. D.L. Prob. | Rel. D.L. Prob.
Failed Disks Py Pdl
11 0.000000 0.000000
12 0.101188 0.101188
13 0.282369 0.201578
(b) 14 0.498656 0.301390
15 0.699554 0.400719
16 0.849641 0.499547
17 0.939516 0.597734
18 0.981549 0.694951
19 0.996135 0.790522
20 0.999547 0.882851

Table 3.21: Data Loss Probability for two disk arrays, (a) 5 reliability groups with 11
disks each and a total storage capacity equal to that of 45 individual disks and (b) 10

reliability groups with 12 disks each and a total storage capacity corresponding to that of

100 individual disks each.

not situated leads to data loss because the relocated data from these disks will sometimes
be on the failed string. If the string contains one of the two disks, we avoid data loss. If
in addition to the two failed disk another disk has failed in the partition, the only scenario
that avoids data loss is: The additional disk lost is in the other reliability group (not the
leader), and the failed string contains one of the two original disk failures. Depending on
the location of the additional disk failures, one or two disk failures contribute to k. If
two additional failures have occured, then the two additional are in the other reliability
group and one of them as well as one of the original failed disks are on the failed string.
If the partition started out with three reliability groups, then, regardless of additional disk
failures, no string failure can be tolerated. We collect the exact probabilities of data survival
in a partition of size z; with [; additional disk failures, so that in the resulting state k;

failed disks besides the string are in the original partition, in Table 3.22.

82

track | @1 a9 a3 track | a7 ¢y T m

1: bl bg bg 1: bl bg bg as

track a1 a9 as track | a9 @¢; m M

(a) 2: bl bg b3 (b) 2: as bl b2 b3
track | as a; ag track | a3 ¢; m M

3: bg bl b2 3: bg ag bl b2

Figure 3.25: A Two by Four Disk Array: (a) Fault-Free Data Lay-Out (b) Data Lay-Out
after 2 Disk Failures

zs | Is | ks P
11010 1/n
1101 (n—1)/n
1111 2/n
2101 2/n

2 (1] 1| 1/(n(n-1))
212 1/n

2 12| 2 |2/(n(2n-3))

Table 3.22: Non-zero Probabilities, that in a partition with originally z reliability groups
and [; additional disk failures, the data survives string failure and that in the resulting state

ks disk failures outside the failed string remain.

(h) Transition Rates from Disk to String Failure States: We first calculate the
transition rates from the state, in which exactly m disks have failed. We introduce the
probability function G(s,w, k) whose arguments have similar intuitive meanings as in Sec-
tion (e). The first number, s gives the number of reliability groups we are considering, the
second is the “weight”, the number of disk failures in the s reliability groups and & is the
number of disks failures outside the string in reliability groups 1 to s. From our analysis in

Section (g) we derive the initial values:

1
G(1,1,0) = —

1

G(L,L1) = 1--
2
G(1,2,1) = =
G(1,0,0) = 1

83

G(l,w, k) = 0 for all other values.
We obtain a recursion formula for G(s,w, k) based on the partitioning:

G(s,w, k) = prp(0,n,w,sn)G(s—1,w, k)

1
+php(1, n, w, sn);G(s - 1,w—1,k)

+php(1,n,w, sn)(1— l)G(s - l,w—1,k—1)

3

+php(2, n, w, sn)%G(s -l,w—-2k-1)

Here, py, stands for the hypergeometric probability distribution. In our sum, the first
addend corresponds to the cases, in which the current reliability group is not a leader, the
second to the case, in which the current reliability group is a leader with one lost disk and
where the failed disk is located on the failing string.

If m disks have failed, then the probability that a string failure leads to a transition
to the state characterized by a string failure and failure of an additional & disks is G(m,m, k).
The same probability under the assumption that only ! (with 0 < [< m) disks have failed,
is G(m, 1, k).

Our final probability calculation determines the data loss probability for a string
failure after previous [+ m disk failures. We define a data loss probability function
K(s,w,l, k) recursively, where the arguments have the same intuitive meaning as before
and ! denotes the number of additional failures located in reliability groups with leader in
groups 1 to s.

The recursion base is laid in Table 3.22. The recursion itself takes the form

K(s,w,l, k)=
Phg(0,m,w,sn)K(s—1,w,l, k)

+phg (1, n, w, sn)ppy(0,n — 1,1, wn % (- 1,0,k)

+phg s, w, SN phg (5—1 w — 17l,k—1)

n

)
,n— 1,01, wn)2=—=
)

+phg(L,n, w, sn)ppg(l,n — 1, L wn)2K(s — 1, w—1,l -1,k —1)

@ 1)Ix(s—lw 2,l-1,k-1)

Ix(s—l w—2,0-1,k-2)

3= 3

+D1g(2,m, w, s1)ppy(1,2n — 2,1, wn

()Prg(0
(1)Prg(0
()Phg(oK
+phg(2,m,w, s0)prg(0,2n — 2, L, wn)2K (s — 1,w — 2,1,k — 1)
FPhg (2,1, w, sn)prg(1,2n — 2,1, wn)
(2,)Prg(1,)
()Phg()ne

+Phg(2,n, w, sn)ppy(2,2n — 2,1, wn Ix(s—lw—?l—Qk—Q)

7’L

84

The various summands arise from case distinctions, where we first separate according to
whether reliability group s is not or is a leader (summand 1 versus all the other ones) and
whether 1 or 2 disks have failed, then according to the number of additional disk failures in
each partition. The first two factors in a summand are the respective probabilities, then we
multiply the survival probability in the partition with a certain number of surviving disk
with the corresponding survival probability in the rest of the disk array. We need not worry
about partitions with leaders with weight 3 or more, as those always suffer data loss during

a string failure.

(i) Disk Failures after String Failures: After a string failure, every reliability group
suffered loss of at least one disk and hence every reliability group is vulnerable. Our reas-
signment policy insures, that the spare space in each reliability group is devoted to lost data
in the same group. Hence, the situation after a string failure is completely characterized
by the number of additional disk failures. The careful reader will not need the caveat, that
this number of additional disk failures is not the total number of historic disk failures, as
some of these might have been located on the failed string. The only disk failures that
do not cause data loss are in a reliability group without additional disk failures, hence the

marginal probability for a non-data loss transition is (m — k)nA for £ additional disks.

(j) Second String Failure: A second string failure leads to data loss exactly if any
additional disk failures are not located on the second failed string. If this number is &k, then
the data loss probability is 1 — n=*. After the second string failure, the system either has

already suffered data loss or is not capable of withstanding any further component losses.

(k) The Markov Model: We distinguish disk failure states (D,!), where [, with 0 <
I < 2m, disks have failed, string failure states (59, %), with (0 < k& < m), which describe a
string failure and an additional £ disk failures. Finally, we have the double string failure
state (2.5). We present the probability that a given transition is taken for our RAID with 5

reliability groups in Table 3.23.

85

(D,l) | to(D,l4+1)| to(5,0) | to(S5,1) | to(S5,2)
to (9,3) to (9,4) | to (5,5)

0 1.000000 1.000000 | 0.000000 | 0.000000
0.000000 0.000000 | 0.000000

1 1.000000 0.090909 | 0.909091 | 0.000000
0.000000 0.000000 | 0.000000

2 1.000000 0.006734 | 0.168350 | 0.673401
0.000000 0.000000 | 0.000000

3 1.000000 0.000381 | 0.019059 | 0.190585
0.381170 0.000000 | 0.000000

4 1.000000 0.000015 | 0.001466 | 0.029321
0.146604 0.146604 | 0.000000

5 1.000000 0.000000 | 0.000072 | 0.002875
0.028746 0.071865 | 0.028746

6 0.809229 0.000000 | 0.000001 | 0.000080
0.001533 0.008681 | 0.011743

7 0.614578 0.000000 | 0.000000 | 0.000002
0.000074 0.000779 | 0.002074

8 0.418900 0.000000 | 0.000000 | 0.000000
0.000002 0.000054 | 0.000250

9 0.224412 0.000000 | 0.000000 | 0.000000
0.000000 0.000002 | 0.000026

10 0.000000 0.000000 | 0.000000 | 0.000000
0.000000 0.000000 | 0.000003

Table 3.23: Transition Probabilities for the 5 x 11 classic RAID with Distributed Sparing.

86

1000 sh: Super Hardened String 1000 - Super Hardened Strings
h: Hardened String
w w
g g
3 s Soft String o
[a] [a)
F = 500 Hardened Strings
= =
Soft Strings
0 T T T T T
0 20 40 60 80 100
Recongtruction Time (hours) Repair Time (hours)
Super Hardened Strings
1000 Hardened Strings

w

g Soft Strings

2

.

2

~ 5004

=

Uy M | T
10000 100000 1000000

Disk MTTF (hours)

Figure 3.26: Impact of Reconstruction Time, Repair Time, Disk MTTF on the MTTDL of
the Classic RAID with Distributed String Sparing.

87

3.4.9 Distributed String Sparing with Almost Complete Load Balancing

This organization combines excellent reliability for all string hardness levels with
excellent performance in the normal and in the disk failure case.

To make the analysis of the Markov model numerically safer, we again collapse
states. We characterize the states of our Markov model by the number of failed disks with
or without the conjunction of one or two string failures. The analysis is more involved than
the pure accounting in a model with many states, but our error estimates are still excellent.

First, we determine the number of failed disks that the RAID can occur without
data loss. The first m disk failures are reconstructed on the spare space. The next disk
failure stresses the redundancy of the RAID. Disk failure m + 2 deserves careful analysis.
If it occurs on a different string than disk failure m 4 1, data loss is assured. If disk failures
m + 1 and m + 2 are located on the same string, data loss happens, if these two disks,
which failed last, contain data from the same reliability group that got there through a
reconstruction process. This cannot happen, if the first m failures were located on the same
string. Otherwise, the probability of data loss is very high. For example, if only two disks
are located on different strings, it is 1 — 1072° for the 5 x 11 RAID and 1 — 10~% for the
10 x 12 array. We conclude that the m + 2 disk failure does lead to data loss, unless the
first m disk failures occur on the same string and the next two disk failures are located on
the same string, too.

We distinguish disk failure states (D,[/) with [ranging from 0 to m + 1 in our
analysis. Here [is the number of failed disks. We have states (.5,/), with 0 < [< m that
describe string failure in conjunction with [disk failures, that do not lead to data loss. In
state (.9,1) the [additional disk failures are located on the same string, therefore, state
(5, m) describes two string failures as well. We describe failure of m disks on the same
string by transition to state (.9,0). For this we adjust the disk failure transition rate from
(D,m — 1) to either (D, m) and to (5,0).

We now give the state transition rates, first for disk failures. We have a state
transition from (D,[) to (D,l 4 1) at a rate of (nm — [)A\. However, if | = m — 1, we need

to adjust for our state relabeling. We observe a transition to (.5,0) when all m failed disks

88

are located on the same string. The transition rate is therefore

-1

nm
n- (mn —m+ 1)\
m
and to (D, m) it is
-1
nm
(1-mn- J(mn —m+ 1)\
m

To discuss the impact of a string failure on a disk array with [/ previous disk
failures, we notice first that if - on a given track level - the string was not used as spare
space and [< m, no dataloss can occur. The situation is different for a string that is used
as spare space. This situation occurs approximately ¢/n times, where ¢ is the number of
tracks. k of the [failures are located on the failed string with hypergeometrical probability
Phg(l—k,n,l,nm). If the string serves as spare space, then dataloss occurres if two (or more)
of the replaced data belonged to the same reliability group. This can only happen if the
failed disks are located on different strings. If there are only two failed disks on different
strings, the data survival probability is (1 — l/m)t/” or 1.9%x107% and 1.77% 10~* for our two
examples. If there are three failed disks on two different strings, then the data survival rate
sinks to (1 —2/m)"/" or 1.08 % 1072 and 1.77 10~* for our two examples. These numbers
justify to disregard the possibility for data survival in these cases.

As an aside, our calculations assume a random assignment of reliability groups to
disks in a string. In a concrete disk array, this assignment is fixed. Our calculations signify
that it is difficult to find an addressing scheme that avoids dataloss in these cases. Also,
performance after a disk loss is maximized by an addressing scheme that would guarantee
dataloss in these cases.

We can now gather the string failure transition probabilities for the various disk
failure states:

From Normal State (D, 0) a string failure leads with marginal probability nu to State (5,0).
From State (D, 1) a string failure leads with marginal probability p to State (.5,0) and with
marginal probability (n — 1)u to State (5,1).

From State (D, 2) a string failure leads with marginal probability 72527)“ to State (.9,0),

-1
m—1)

89
with marginal probability % to State (.9,1) and with marginal probability
-1 -1

n—1 nm n nm

n’ +(n-1) (1—1/m)"" | np

to State (9,2).
In general, if the system is in State (D,[), then k disks will be located outside the string

with hypergeometric probability

-1
n mn—nmn nm

l—k k l

phg(l — k,n,l,nm) =

are located outside the failing string. If £ = 2, then with probability
t/n
n—1 2 m(n —1) (2/m)
2 2
we observe dataloss, here, the first factor is the chance that the two disks are on different
strings and the second factor the chance of dataloss in that case. With the opposite prob-
ability we observe a transition to State (D, k). A string failure itself occurs with marginal
probability npu.
If £ > 2 then with probability

m m(n — 1))

k k

(n—1)

the disks are all located on the same string and we observe a transition to State (5, k).
Otherwise, we observe dataloss.

Next, we consider disk failures after a string failure. If we are in State (.5,0) we
observe a transition to (59,1) with marginal probability (n — 1)mA. In State (5,/) with
[> 1, any additional disk failure in a different string will lead to dataloss, this transition
represents with marginal probability (n — 2)mA, and one in the same string as the other
additional disk failures will keep the data safe. The transition to State (.9,/+1) occurs with
probability (n — [)A.

A string failure from State (5,0) happens with probability (n — 1)u and leads

to a State (25) from which any other failure leads to dataloss (with marginal probability

90

(n —2)mA 4+ (n — 2)p.) From State (5,[) dataloss is only avoided if all [disks are located

on the failing string: With probability

-1
m (n—1)m
(n—1) 7
l l
we observe a transition to State (25) and with probability
-1
m (n—1)m
(n—1)|1- 7
l l

a transition to the failure state.

We give the sensitivity analysis in Figure 3.27. It becomes clear from the graph for
the reconstruction time, that the excellent resilience depends on fast reconstruction. This
graph and its companion graph in the preceding section constitute a strong argument for

ACATS.

91

Super Hardened Strings Super Hardened Strings
1000 1000
w w
g g
))
I9 Hardened Strings I9
| Harden: 4
£ 500 g £ 500
= =
Hardened Strings
0 T T T 0 — 1 T 1 U
0 2 4 6 8 10 0 20 40 60 80 100
Reconstruction Time (hours) Repair Time (hours)

Super Hardened Strings
1000 Hardened Strings
w
\ﬁg Soft Strings
.
2
. 500
=
0 T T] T]
10000 100000 1000000

Disk MTTF (hours)

Figure 3.27: Impact of Reconstruction Time, Repair Time, Disk MTTF on the MTTDL of
the RAID with ACATS and Distributed String Sparing.

92

0.04
;
0.02
2
a
a
= O-OO‘_//
'_ ~~‘.
s
(0]
s T
® 004 T
T
14
0.04
——
0 20 40 60 80 100

Repair Time

Figure 3.28: Relative Difference of MTTDL obtained from the Deterministic Repair Time
Distribution (solid line) and Uniform Repair Time Distribution (dotted line) compared with

MTTDL obtained using the exponential distribution.

3.5 Influence of Repair Time Distribution

We investigate the influence of the repair time distribution on RAID MTTDL in
this section. We consider the example of the Level 5 RAID with ACATS and no sparing.
We use two alternative repair time distributions. The first is the deterministic distribution,
where repair takes place exactly 1/p hours after a failure. The uniform distribution sees
repairs taking place with equal probability during a fixed amount of space. A “realistic”
distribution is a mixture of these two. For illustration, we assume that failures are discovered
almost immediately during an 8 our daily shift. Repair then takes place within a certain
time limit (e.g. 1 hour). A failure at other times is discovered at the beginning of a shift.
The resulting, realistic probability distribution for the repair time has a repair time of 1
hour with probability 1/3 and distributes the remaining 2/3 weight uniformally between 1
hour and 9 hour repair times (assuming dedicated employees willing to tackle problems on
overtime.)

To calculate the MTTDL under these distributions, we first calculate the proba-

bility that after a disk or string failure another failure happens before the repair has been

93

performed. In case of the deterministic distribution, this probability is p(*/#) where p de-
notes the hourly rate of further dataloss inducing failure and 1/p the time between the
initial failure and repair. If the repair time is uniformally distributed between 0 and 2/p,

we obtain the probability of further failure as

We calculate the MTTDL now from a two state failure model. A transition takes place
from the fault free state to the data loss state if an initial failure happens and another
failure strikes while the repair triggered by the first failure is not performed. The resulting
MTTDL figure does not account for time the system spends waiting for repair, but stops
the clock ticking until the repair has been performed. We adjust the preliminary MTTDL
figure by adding the average repair time 1/p times the expected number of repair triggering
failures.

We compare the resulting MTTDL figures with the ones for the exponential dis-
tribution and display the results in Figure 3.28, where we give the relative difference. The
exponential distribution gives the largest MTTDL numbers, followed by the uniform and
the deterministic repair time distributions. The error resulting from use of the wrong dis-
tribution is less than 2 % . Garth Gibson [11] comes to the same conclusion as we in his

Ph. D. thesis: The impact of repair time distribution is minimal.

Chapter 4

MDS Based RAIDs

4.1 MDS Codes

In this section we give only a short overview of the coding theoretical background
of Maximum Distance Separable (MDS) codes. A more complete treatment of the topic

can be found in any good book on algebraic coding theory [26].

4.1.1 Holographic Information Dispersal

In [30] M. Rabin introduced the Information Dispersal Algorithm (IDA.) IDA
takes a given datum and generates m equally sized fragments. Given n or more fragments,
(whose number depends on the IDA algorithm used) we can reconstruct the original da-
tum. Figure 4.1 illustrates an IDS algorithm with 8 fragments and a threshold of 4. This
holographic storage algorithm can be formulated in terms of coding theory and the consid-
erable knowledge about algebraic codes can be applied. [29] was among the first to point
out the connection between Rabin’s approach and MDS Codes. This should not distract
from Rabin’s achievement who gave a new paradigm for well known mathematical tools.
Karnin, Greene, and Hellman[15] who studied the sharing of information within a “faulty
environment” use a similar scheme. Abdel-Ghaffar and El Abbadi report a file comparison
scheme that uses this approach [1]. Recently Blaum et al. [4] have created a novel coding
scheme for the explicit purpose of use in a disk array with double disk failure tolerance.

To make the connection between IDA and coding theory, assume that a bit string

I is subjected to IDA, resulting in fragments ¢q,...c,. Then the mapping of I to the

93

94

datum

INE

| frag. 1| |frag. 3| |frag. 4| |frag. 6| |frag. 7| |frag. 8|
\\\ : I/ //
. [
SR
| datum |

Decoding

Figure 4.1: General IDA Scheme

concatenation of all the fragments ¢ics...¢,, is an algebraic block code. We assumed that
all the fragments lie in a fixed symbol set; to be more precise, they are represented as bit
strings of a given length. By design an IDA algorithm yields an m — n erasure correcting
code: if m —n of the symbols in a codeword are lost, then the codeword can still be correctly
decoded. Erasure correction is easier than error correction, indeed most of the work in error
correcting decoding is spent on calculating the error location. Every error correcting code
is erasure correcting at the same or - usually at a much higher - level of correction.

Besides ease of computation, an efficient IDA is one that makes good use of the
space used to store the fragments. A storage optimal IDA uses as much storage (in bits)
for n fragments as the original data uses. We cannot hope to do better, unless the original
storage scheme for the data is redundant. A space optimal IDA has to generate fragments of
the same length L/n, if L is the size of the original datum. While the possible data lengths
varies, an IDA algorithm has to assume that the data consists of atomic constituents, the
data symbols. For a practical algorithm, a data symbol could consists of a bit strings of
length 16 bits and disperse the symbols into fragments composed of symbols of length 8
bits each. While not every possible bit string can be exactly decomposed in symbols of 16
bits each, we can pad with zeroes.

The corresponding encoding is a mapping from the data symbol space (all bits
of length /) into the m — fold cartesian product of the fragment symbol space (m-fold

concatenation of bit strings of length k¥ = [/n.) The size of the data symbols has to be a

95

IDA
DATUM

R

HEEEEEEEE \%/%%ED
/LN

FIEEIEIETIERE e
AN / 4
N

ﬂ Decoding

Figure 4.2: Wastefree IDA as an MDS code.

multiple of the fragment symbols. In all, the encoding is a mapping from the nfold cartesian
space over the fragment symbols into the mfold cartesian space, or an [n,m] code. (The
codewords (the concatenation of the fragments) form an n dimensional manifold in an m
dimensional linear space over the finite field with 2% elements, where k is the fragment
lenght in bits.)

The IDA property states that a codeword is determined if n of the codeword
coordinates (the fragments) are known. Codes with this property are known as Mazimum
Distance Separable Codes (MDS) codes. The name refers to an equivalent property of
codes. We can easily change an MDS codes to separate information symbols from check
symbols. Then a codeword is formed from a datum (dy,ds,...,d,) by appending check

symbols ¢, 41, . ..¢,, to obtain a code word

(d17 d27 i 'd"rL7 Cn415Cn42;5 - - 'Cm)-

The resulting IDAs are by far better than the original examples given by Rabin.

We illustrate the connection in Figure 4.2.

96

4.1.2 Linear MDS Codes

The best suited MDS codes for our purposes form a certain class of linear MDS
codes that happens to be already in wide use for error correcting data transmissions and is
implemented in hardware on a commercially available chip. As we will never use the error
correction capabilities of the codes, special purpose chips would be smaller and even faster.
In fact, the speed of the chips available is more than sufficient for use in a disk array.

The description of this family of codes relies on linear algebra. In short, a datum
is represented as a vector of dimension n over the finite field with 2% elements. We then
multiply this vector with a m X n matrix T to obtain the codeword as an m-dimensional
vector. The matrix T is chosen so that any n rows are linearly independent. Vandermonde’s
theorem assures us that such matrices exist with 2% rows. This is more than sufficient, if
we use k > 4 or k = 8 and base our scheme on bytes. In order to decode a codeword, we
only need to know n of its vector coordinates. We form a matrix T consisting of only those
rows in T, for which we know the corresponding coordinates in the codeword. Then T is
invertible and we can recover the original datum by solving a system of linear equations.

By using elementary column transformations and elementary row transformations
for the first n rows only, we can always transform a Vandermonde matrix into an encoding
matrix 7" which has the identity matrix in the first n rows. As a consequence of this
normalization, the codeword formed from datum (%172 ...7,) has the same symbols in the

first n coordinates. In a formula:

7 1 0 ce 0
3!
i2
127 = tn,l tn,2 e tn,n
Cnt1 th1,1 Tnt12 0 Tntim .
in
Cm tm,l tm,2 e tm,n

Because the encoding is linear we have a remarkable and extremely useful property.
If one coordinate of the datum is changed, then only the check symbols and the correspond-

ing information coordinate in the codeword changes. Furthermore, the new check symbols

97

W N = O 4
W N = OO
N WO ==
_— O W NN
O =N WW
W N = O ¥
(el en Bl e Blen) Hen
W N = O
— W N DI
N = W oW

Table 4.1: Finite Field Operations for the Field {0,1,2,3}

can be calculated solely from the change in the information coordinate and the old check

symbol. The calculation involves only multiplication and addition.

4.1.3 A Coding Example

We give an example for linear MDS codes. To simplify notation we use 2-bit
symbols, which we denote by the decimal equivalence of the binary number they represent.
Thus 0 denotes the bitpattern 00 and 2 the bitpattern 10. All our calculations are done
in the finite field with 2 elements. We assume the standard definition of addition as the
exclusive-or of bit strings and multiplication as polynomial multiplication modulo the one
irreducible polynomial over {0, 1}. We give the addition and multiplication table in Table
4.1.2.

The order 3 Vandermonde matrix has rows consisting of the powers of a given

0 .1

element z, that is, the rows have the form (z°, z!, 2?). In addition, we can add an additional

row (0,0,1) to obtain the “once extended” VanderMonde matrix:

1 00
1 11
V=11 2 3
1 3 2
0 01

We use now elementary transformations to obtain our Coding Matrix

1 00
010
C=1001
111
1 23

The coding matrix is not unique, our particular choice offers easy arithmetic.

Assume that we would want to encode a bit string
0010000100111110010000100. . ..
We then split the bit string into blocks of 6 bits each:
001000 010011 111001 000010 cee

organize the substrings as three dimensional vectors over our finite field:

0 1 0
2 0 0
0 3 2

Then we multiply these vectors with our coding matrix C' and obtain:

0 1 0
2 0 0
0 3 2
2 2 2
3 3 1

We convert the vectors to 10 bit strings:
0010001011 0100111011 0000101001
and concatenate to obtain the encoding of our original bit string
001000101101001110110000101001

This is the bit-version of our MDS code used as an error correcting code.

98

99

If we wanted to use our encoding mechanism for IDA, we would proceed slightly
different. The first steps are the same, we split the original sequence into strings of 6 bits
each

001000 010011 111001 000010,

write them as three dimensional vectors

0 1 0
2 0 0
0 3 2

and encode them by multiplication from the left with C':

0 1 0
2 0 0
0 3 2
2 2 2
3 3 1

The fragments are then formed by the coordinates in the same dimension, that is
(0,1,0,...) (2,0,0...) (0,3,2,...) (2,2,2,...) (3,3,1...)
or - as bit strings -
(000101...) (100000...) (001110... (101010...) (111101...)

To show the encoding process, assume that fragments 3,4,5 in the above order are

available. This correspond to a small encoding matrix ¢ formed from rows 3,4 and 5 of C.

0 01
c=11 11
1 2 3
The inverse of ¢ is
2 3 2
c =132 2
10 0

100

We organize the three available fragments into three-dimensional vectors, whose

coordinates are taken from the corresponding fragment:

0 3 2
2 2 2
3 3 1

0 1 0
2 0 0
0 3 2

back, which unravels to
001000 010011 111001 000010,
or the original bitstring
00100010110100111011000010100

For MDS-code based RAIDs, we will use a slightly different scheme, that corre-
sponds to taking the parity of unrelated data. Assume that we want to store the beginning
of the Gospel of John in English, German and Greek. (In the beginning .., Im Anfang ..,

En en arche ..) In ASCII, the strings would start out with:

01001001011011100010000001110100
01001001011011010010000001000001
01000101011011100010000001100101

We convert the bit string into our 2 bit equivalent symbols and obtain

1021123202001310
1021123102001001
1011121201001211
As a vector sequence, this is
1 0 2 1 1 2 3
T 0] 2| T -] 1|5 211 3]

101

We multiply with €' in order to obtain our five fragments. Because of the form of C, the

first three coordinates of each vector will just be the three-dimensional vector:

1 0 2 1 1 2 3
1 0 2 1 1 2 3
111011 2 () 2 s 1 s 2 (]11];
1 0 1 1 1 2 1
1 0 2 0 0 0 3

We store then the original sequences on the first three disks and the two checks on two

additional disks:
Disk 1: 1021123202001310

Disk 2: 1021123102001001
Disk 3: 1011121201001211
Disk 4: 1020000101001100
Disk 5: 0020003102000221
If, for example, disk 1 and 2 fail, then we can still recover the original data strings from
disks 3, 4 and 5.
Assume now, that the first record (“In the beginning ...)” is overwritten by “In

initio ...”. The new data is encoded as
01001001011011100010000001011001 ...

or (in our notation) by

1021123202001121

Instead of recalculating the check sums by accessing all “information” disks 1,2 and 3, we
use an alternative approach. The current checks are calculated by multiplying C' to the

information vectors:

i

29 1
ig =C- ig
(4] ig

C2

. y
Now we are changing ¢; to 7}.

-/
(5]

i2

ig =C-

!
51

c

As the addition is really the exclusive-or, we calculate

!
(5]

i2

For the checks in particular, this equation means

i
i2
i3
C1

C2

51

ia

+ 13

‘

¢
i
i3
gl
i3

where (4 is the matrix entry in the

!

i
i2
+ 13
C1
C2
i3
i+
0
0

c14 Caq - (i1 + i1)

ca 4 Cs1- (i1 + 1)

i
i2

i3

102

fourth row and first column of C. Hence, we calcu-

late the new check from the information A, the difference between the new and the old

information, and the old check. The difference to parity coding lays in the multiplication.

For our update, first form the delta-value or difference between the new and the

old string:

Ay = 0000000100000231 ...

and multiply with one. Then we add the result to the old check information and overwrite

the old checks on disks 4 and 5.

/

c; = 1020000101001100 4 0000000100000231 = 1020000100001331

103

¢y = 0020003102000221 + 0000000100000231 = 0020003202000010

4.2 Balanced Information Dispersal Algorithm

Burkhard, Claffy and Schwarz [7] investigate an application of IDA for fast disk
based storage systems, the Balanced Information Dispersal Algorithm (BIDA.) By using an
IDA algorithm by applying the database ideas of read/write quora and version numbers,
we can offer a wide spectrum of excellent data safety as well as fast read or fast write times.
A drawback of this scheme is the large number of disks used.

BIDA uses an array of independent disks as the storage device. An incoming block
is dispersed using an IDA scheme. The fragments are all written to different disks, but the
operation is successful if a write quorum of disks have been written. A read is directed to
all disks, but has completed if fragments from a read quorum of disks have been recovered.
An up-to-date version number validates fragments that have been actually written during
the update of the block.

The scheme will do well in an environment with many small random accesses to
storage. Most of the time, far more than the write quorum of disks will have been actually
written, thus making reads normally very fast, while a write burst can be handled by only
writing to the minimum number of disks. The organization stores data securely because
more than the threshold number of disks will have been written in order to allow faster
reads.

In the final analysis, BIDA allows to selectively improve access times beyond the
single device technology. The throughput of BIDA (which is not that much better than
that of a single disk) and the number of disks involved (10 to 20 per single disk capacity) do
not make it attractive in most general purpose computing environments. Its storage costs
compare favorably with electronic disks (DRAM). We can superimpose a BIDA scheme
on a RAID to prevent a temporary storage overflow, which in effect builds a disk based
non-volatile cache: A small part of the disk area is set apart for this purpose. If a write
burst threatens to overflow the RAID cache (DRAM), then part of its contents are stored
provisionally with BIDA. While storage costs might be as much as 20 times as high as

storage using the RAID scheme, only a minute part of the total capacity needs to be used.

104

On the other hand, writes can be easily four times as fast as a RAID write (in its fastest
implementation.)
A similar application of IDA to RAIDs has been proposed by Bestavros [3].

Bestavros analyzes what amounts to a full write quorum in our notation.

4.3 MDS RAIDs

We can use MDS codes to provide higher redundancy than Level 5 RAIDs. Instead
of only keeping the parity of the data on all the disks in a reliability group on a separate disk,
we can store two or three checks of an MDS codeword on separate disks. This allows us to
compensate for the failure of two or three, respectively, disks in the group. The mechanics of
storing are very similar to that of a parity based RAID. A write to an information block first
reads the old block contents. On the second pass, the new block contents are written. In
the meantime, the delta between the information block contents is determined. In parallel,
the check blocks are read and when the delta value is available are overwritten with the
new check blocks, calculated from the delta and the old check block contents.

Because the actual calculation is done very fast on chip, the only important aspect
in which the write operation differs from the one at a parity based RAID is the higher

number of check disks.

4.4 Reliability of some MDS RAID Organizations

MDS RAIDs display resilience against simultaneous unit failures to a much higher
degree than the corresponding Level 5 RAID organizations with a full distributed string
of spares. However their reliability is worse against unrelated component failure. We will
give in Section 4.5 a simple scheme that gives an MDS RAID exactly the same reliability
as for the Level 5 RAIDs with a distributed spare string. As the hardware costs are equal,
the only trade-off between the two types consist in lower disk utilization for the same load
evidenced by the Level 5 RAIDs and the better resilience against simultaneous multiple
failures.

We only give the reliability of MDS RAIDs without reconfiguration. We will not

pursue analysis of MDS RAIDs with extensive sparing. The result are given in Table 4.2.

105

Disk Storage MTTDL MTTDL MTTDL
Array Capacity | (in years) (in years) (in years)
Organization (in disks) Super Hard Soft

Strings Strings Strings
MDS (ACATS) 45 90.34 79.44 55.29
MDS (ADATS,1SDS) 44 820.82 760.07 491.39
MDS (ACATS) 100 10.31 9.65 7.95
MDS (ADATS,1SDS) 99 127.78 116.91 84.94
MDS (Classic) 45 754.92 580.66 259.48
MDS (Classic,1SDS) 44 983.36 940.51 613.09
MDS (Classic) 100 483.38 315.96 106.46
MDS (Classic,1SDS) 99 919.82 789.50 335.55

Table 4.2: MTTDL Values

The component reliabilities are those given in Table 2.1.

4.4.1 MDS Extension of the Classic RAID

The scheme organizes the disks in reliability groups with two check disks per
group. Address Translation is only provided within the reliability group. The organization
tolerates loss of two strings, loss of a string and at most one disk per group or loss of at
most two disks per group. The reliability is superior, the performance in the normal state
(no component failure) good (with use of volatile storage) and mediocre immediately after a
disk failure. The comparison with the classic RAID with distributed (string) sparing shows,
that the latter scheme gives better reliability numbers, if the reconstruction time is less than
an hour. This does not include related component failures which might be prompted by the
larger load of reconstruction or - more likely - by the same cause that contributed to the

first component failure. A detailed analysis is given in Section 4.6.1.

106

4.4.2 MDS RAID with Almost Complete Address Translation

This scheme trades reliability for better performance after a disk failure. Its only
difference to the Level 5 RAID described in 3.3.3 is the inclusion of another check disk in
each reliability group. The RAID suffers data loss exactly if data on three disks in different
strings become unavailable. Comparison with distributed sparing of a string shows that the

latter scheme has better reliability for reconstruction times less than 1.5 hours.

4.4.3 MDS RAIDs with Safe Distributed Sparing

By adding one distributed spare disk to the scheme, we achieve reliability figures
which are better than any other scheme over a wide range of string failure possibilities.
Our sensitivity analysis in Figure 4.7 shows that the resulting reliability does not heavily

depend on the reconstruction time.

4.5 Reconfiguration in MDS RAIDs

Two facts explain the better reliability of the corresponding Level 5 RAIDs with a
full distributed spare string as compared to MDS RAIDs without sparing. While the MDS
RAID does not need reconstruction on spare, the speed of the reconstruction of lost data on
spare space in the Level 5 RAID is so fast (circa 20 sec for the RAID with ACATS after a disk
failure and circa 101 sec otherwise) that another unrelated failure during this short period
of time is not likely enough to impact overall reliability. The other fact is the better use of
spare space in the Level 5 organization: If three or more failure happen in one reliability
group, the Level 5 RAID can adapt to the situation whereas the MDS RAID becomes
a victim of the fixed assignement of check disks to reliability groups. Reconfiguration of
Reliability Groups (RRG) gives MDS based RAIDs the same flexibility. Consequentially,
not only exhibit MDS RAIDs better resilience against multiple related failures, but they
show essentially the same, though in fact a little better, resilience against unrelated failures.

We use a second level of reconfiguration, reconfiguration on check, to improve
performance of MDS RAIDs. If a disk in an MDS RAID has failed, we reconstruct message
data on space previously devoted to check data. Reconfiguration on check has no impact

on reliability but makes reconfiguration of reliability groups feasible.

107

Reconfiguration for the extension of the classic scheme takes place when one re-
liability group has lost two check disks while there are other reliability groups which still
have access to all their data. Then one check disk of a failure free reliability group serves
as spare space for the affected reliability group. The result of the reconfiguration is two
groups that can tolerate one more failure as opposed to one group which cannot tolerate
further failure and one that can tolerate two failures.

Reconfiguration for the MDS RAID with ACATS mimicks the use of spare space
in the Level 5 RAID with ACATS and a full distributed string of spares as well. If there
is a disk failure, then all disks in the string containing the failed disk are on demand spare
disks. In both cases, the reliability of the MDS RAID with reconstruction is the same as

the Level 5 RAIDs with a distributed spare string and without or with ACATS.

4.6 Modeling in Detail

4.6.1 MDS Extension of the Classic RAID

The analysis of the scheme parallels closely the analysis in Section 3.4.1. The main
difference is that there are now two different levels of vulnerability, namely loss of one disk
and loss of two disks due either to string or to individual disk failure.

We characterize states by the number v of level 1 vulnerable reliability groups (one
lost disk) and by the number w of level 2 vulnerable reliability groups and write (v, w) for
these states. The number of failed disks in state (v, w) is v 4+ 2w. In addition, we introduce
states (.9, v) to describe the states after a string failure, the other index indicates the number
of vulnerable disks. Finally, state (1) describes the RAID after two string failures.

As usual, the state transitions corresponding to repair is taken with marginal
probability p from every state to the normal state. The failure of essential equipment is
modelled by a transition from each state to the failure state taken with probability e.

A disk failure leads from state (v,w) to state (v 4+ 1,w) with probability (m —
v — w)nA, to state (v — 1, w + 1) with probability v(n — 1)\, and to the failure state with
probability w(n — 2)A, depending whether the failing disk is located in a not yet vulnerable
reliability group, a level 1 vulnerable group or a level 2 vulnerable group. respectively.

The effect of string failure on a RAID in state (v, w) depend on the location of the

108

-Super Hardened Strings Super Hardened Strings
] Hardened Strings
1000 1000 +
w @
g g Soft Strings
) R
_| |
= =
£ 500 i~ 5004
= =
0 T T T T T T T T T T 0 T T] T
0 20 40 60 80 100 10000 100000 1000000
Repair Time (hours) Disk MTTF (hours)

Figure 4.3: Impact of Repair Time and Disk MTTF on the MTTDL of the MDS extension
of the Classic RAID

previously failed disks on the failing string. First we check the level 2 vulnerable reliability
groups: There are two good choices for the failing string in each reliability group. With
probability (2/n)" a string failure will not lead to data loss and with probability 1 —(2/n)"

it will. Then we check the level 1 vulnerable groups: With probability
. v i v—1
pli,o)=1| |(1/n)((n=1)/n)
7

1 of the failed disks in the level 1 vulnerable groups will be located on the disks. Thus, we

observe a transition from state (v, w) to state (9, w + v — 7) with probability

(—5) - pliv) m-p
and with probability
2
(1—=—5)n-p

to the failure state.
To actually program the Markov chain, we use a state encoding function

(2m —w+ 3) % w)
2

(v,w)— v+

109

o = -Hp — (Failure
+nm\ +(n-1)mA (-2) u State
+(N-2)m A

Figure 4.4: Markov Model for the MDS Extension of the Level 5 RAID with Almost Com-

plete Address Translation

that maps the double indexed disk failure states into the coefficient space for the transition

probability matrix M. Similarly, we map the single string failure states via

(m+1)(m+2)
2

(S,v) = v+

This allows us to automatize the calculation of the transition probabilities.

4.6.2 MDS Extension of the Level 5 RAID with Almost Complete Ad-

dress Translation

This organization loses data if disks on three different strings are lost. We can
capture the state of the RAID in only four different states, states 0,1 and 2, where the label
is the number of strings with at least one lost disk. The simple Markov chain is depicted
in Figure 4.4.

The transition matrix is

M= ,

110

Super Hardened Strings
1000 - Super Hardened Strings 1000 -
Hardened Strings
Soft Strings
w w
g g
P P}
= =
£ 500 £ 5004
= =
0 T T T T T 0 T
0 20 40 60 80 100 10000 100000 1000000
Repair Time (hours) Disk MTTF (hours)

Figure 4.5: Impact of Repair Time and Disk MTTF on the MTTDL of the MDS RAID
with ACAT

Disk/ Disk/

String String

Fallure Fallure Disk/
Disk String
Fallure Fallure

|sk/
Normal String Disk String Data
State Failure Failure Failure Loss
String Disk/
Failure Strlng String
Failure

Failure

Figure 4.6: Markov Model for the MDS RAID with ACATS and SDS

from which we could easily calculate a closed form expression of the MTTDL value, which

is not very readable. We give a sensitivity analysis in Figure 4.5.

4.6.3 MDS RAID with Almost Complete Address Translation and Safe
Distributed Sparing

We provide one disk worth of spare space among all message disks. The states of
the Markov model capture the number of strings that have failed or contain a failed disk.
This number ranges from zero to two. In addition, we note, whether the RAID makes use

of the spare space. We picture the Markov model in Figure 4.6. We distinguish the normal

111

and the failure state as well as state (s) in which a failed disk is reconstructed in the spare
space, state (1), representing one string failure, state (1,s) depicting string failure and use
of the spare space for an additional disk failure, state (2), two string failure, and state (2,s),
two string failures and use of the spare space by an additional disk failure, which must
have occurred before the last string failure. The transition rates are obtained from simply

counting the remaining devices.

112

1000 Super Hardened Strings 1000

1 Hardened Strings

Super Hardened String

MTTDL (years)

MTTDL (years)

500 500
Hardened String
Soft Strings
Soft String
o—m—rm— 7717 777171
0 2 4 6 8 10 0 20 40 60 80 100
Reconstruction Time (hours) Repair Time (hours)
vskip20pt
Super Hardened Strings
1000 - Hardened Strings
w
fi% Soft Strings
-
=
500
=
0 RN]
10000 100000 1000000

Disk MTTF (hours)

Figure 4.7: Impact of Reconstruction Time, Repair Time and Disk MTTF on the MTTDL
of the MDS RAID with ACAT

Chapter 5

Two Dimensional RAID Schemes

Gibson’s thesis [11] advocated a two dimensional RAID scheme as a means to
further increase RAID reliability. In this scheme each disk is part of two reliability groups,
which overlap in exactly this one disk.

We show such an organization in Figure 5.1. There 16 information disks are
arranged in a two-dimensional grid. Each vertical and horizontal axis forms together with
the disk at the very right or bottom a reliability group of five disks each. The parity of
the information disks is stored in the check disks (marked with a “C”.) The poor ratio of
8 check disks versus 16 information disks improves as more disks are incorporated in the
scheme. The shadings indicate disks belonging to a given string (consisting of four disks
each.) The particular assignment of disks to strings - what we call the “Stringing the RAID”
- is a difficult problem in Mathematical Combinatorics, if reliability is to be optimized. The
naive stringing shown in the figure is not particularly good.

As there is only one check disk in each reliability group, we can use parity as the
check. Furthermore, by using our Almost Complete Address Translation Scheme (ACATS)
we can distribute the amount of check data, a physical disk carries, equally throughout the
RAID and obtain good performance both in the absence of failed components and in the
presence of a failed disk. The only alternative seems to be the use of a static assignment of
disks, which severly limits performance because the checks will become hot spots during a
write burst. The equivalent one dimensional scheme is known as a Level 4 RAID. We can
use distributed sparing in both versions to bolster the RAID reliability.

The remainder of this chapter is organized as follows: In Section 5.1 we investigate

106

107

|
7
¥

Reliability
Group

._!@
@ae

Figure 5.1: A Two Dimensional RAID Scheme

the resilience of the twodimensional scheme against disk failure only. Our results indicate
the good potential of the scheme. The model relies on calculating numbers of Disk Failure
Patterns. This task has been relegated to Section 5.3, which is quite technical and can
be skipped. In Section 5.2 we discuss the problem of assigning disks to strings. The best
stringing scheme will offer tolerance against simultaneous failure of two strings (or disks.)
We can show that without sparing no scheme can exist that exceeds this tolerance. We
conjecture that stringing schemes that offer tolerance against two component failure and
attain the obvious bound of n disks per string (for a total of n? 4 2n disks) do not exist for
n > 5. We give, however, schemes with a smaller number of disks per string that exhibit
tolerance against two component failure (Section 5.5.2) and we calculate their reliability
in Section 5.5.3. The twodimensional RAID uses a somewhat larger number of disks than
most MDS code based RAIDs with same capacity and the last mentioned schemes use more

strings. The reliability numbers in Table 5.5 can only be compared with this caveatin mind.

5.1 Disk Failure Reliability of the 2 Dimensional RAID

We first investigate the degree to which a 2 Dimensional RAID can achieve data
safety against disk failures. We investigate a RAID that uses a full address translation
scheme, in which a logical disk track address is mapped potentially into every physical disk

track address. In Table 5 we give the data loss probabilities for such a RAID with a given

108

Number 48 Disks 48 Disks 120 Disks 120 Disks
Static Balanced Static Balanced
3 0.0020814061 0.87551565 0.0003560746 | 0.29962407
4 0.0104070305 0.99995434 0.0017255925 | 0.82219770
5 0.0315364561 | 1 — 1.21 %« 10~ | 0.005374177 | 0.995431954
6 0.0745336030 | 1 —2.29 % 1073* | 0.012580325 | 0.999996825

Table 5.1: Data Loss Probabilities for the Static (no address translation) and the Balanced
RAID (full address tranlation) for two RAID Sizes with Capacity 36 Disks and 100 Disks.)

1192 2. 95)\

—

118\ 29 45\ O 08\

81.94\

1200
Ok

86.55A\ 112.05) 113.92)\ 113\

Figure 5.2: Markov Model for the Disk Failure Reliability of the Two Dimensional RAID
with 120 Disks.

number of disk failures. As we can see, the disk address translation scheme has a strong
negative impact on the reliability. Failure of 5 disks for the small (48 disks) and 6 disks for
the larger (120 disks) RAID lead to data loss with a probability that is not distinguishable
from one.

To derive the results, we first calculate the data loss probabilities for a “static”
RAID without full address translation. This RAID organization is hardly usable, as the
performance is severly limited by the load of the check disks. In contrast to the static
RAID, a RAID with address translation consists of 1000 (the number of tracks) logical
static RAIDs and the calculation of the data loss probabilities reflects the fact that data
loss has to be avoided for all these 1000 virtual RAIDS.

In Section 5.3 we give the details of the enumeration of all “disk failure patterns”
that lead to data loss in the static RAID. To summarize the method there, we count the
Minimal Disk Failure Patterns, which are not contained in any disk failure pattern, that

leads to data loss. Failure of three disks is necessary to induce data loss, but only if they

109

Disk Failure || Two-Dim. | Two-Dim. MDS MDS
Probability RAID RAID RAID RAID
(per hour) 48 Disks | 120 Disks | 48 Disks | 120 Disks
0.000005 1171.64 1153.92 1051.47 387.48
0.000010 1152.22 937.08 616.04 71.93
0.000020 922.99 252.53 148.13 10.62
0.000040 242.88 24.06 22.67 1.65
0.000080 23.76 2.26 3.40 0.30

Table 5.2: Reliability against Disk Failure of the Two-Dimensional RAID (with 36 and 100
disks capability) compared with 2 MDS RAIDs (with Dimensions 6 * 8 and 10*12). The

survival rate is given in years.

form a certain pattern, the “open triangle” (see Figure 5.3). If we consider failure patterns
for disks that consist of more than three disks, then a majority of those will consist of
an “open triangle” and other disks. Similarly, any failure pattern will contain at least on
minimal failure pattern. We can use the combinatorial principle of inclusion and exclusion
together with the count of minimal failure patterns to count all failure patterns with a given
number of disks. This gives us the probability of data loss for any given number of disk
failures. Because this probability becomes overwhelming for 7 disk failures or more, we only
enumerate failure pattern containing up to 6 disks.

The resulting Markov model, which takes only disk failures into account, (see
Figure 5.2) is easy to derive. We only need to consider repair, disk failure and essential
component failure transitions. The non-absorbing states of the model reflect the number of
failed disk. We calculate the transition rates are from the data loss probabilities given the
failure of that number of disks.

We give the survival rates for a range of disk failure probabilities in Table 5.1;
the third value is our standard value. The high reliability of the two-dimensional scheme
is apparent. We should note, that a non-hashed MDS-RAID shows much higher reliability.
We have results about the tremendous increases in reliability available with the use of
distributed sparing in Two-Dimensional RAIDs. While these numbers do not apply to any

existing RAIDs, they show the reliability promises of the two dimensional RAIDs.

110

OO ODOOOD
OB OO0
OO ODOOOD
OO ODODOOD
OO OOD
O®OOOD

OO ODOOOD
OB OO®O
OO ODOOOD
OO ODOOOD
OB OO@®O
OO ODOD

OB OO0
OO ODOOOD
OO OOOOD
OB OO
OOODODOOD
OO OOOD

OO ODOOOD
® O OOO
OO ODOOOD
S O® OO
OO ODODOOD
OCO®OO

OO ODOOOD
OB OO@®O
® OOO@®O
OO ODOOOD
P® O OOD
OO ODOD

OO ODOOOD
OO O®O
OO ODOOOD
S OO O@®O
OOODODOOD
S O® OO

Figure 5.3: Minimal Disk Failure Patterns: Open Triangle, Closed Quadrangle, Open Quad-

rangle, Open Pentagon, Closed Hexagon, Open Hexagon

5.2 Stringing the Two-Dimensional RAID

5.2.1 Figures of Merits for Stringing Schemes

In contrast to the One-Dimensional RAID schemes and to MDS-RAIDs, there is
no natural way to group individual disks into strings. The resulting freedom of design
beckons the question about the definition of goodness of a stringing scheme. Reliability
as expressed in data life expectancy suggests itself, but is not the only figure of merit:
we have also to include performance, both in the normal case and under various probable
failure conditions, and, a related issue, the storage demands of data reconstruction. Some
of the stringing schemes, that we will consider, illustrate the point, for it might be necessary
to repeatedly invoke the data reconstruction process in order to access data lost due to an
almost catastrophic series of failures and, in the process, severly strain the storage capacities
of the RAID as well as restrict performance of access to data not directly involved in the
failures.

Development of a stringing scheme is a combinatorial problem of great difficulty.

We can derive more accessible figures of merit by measuring reliability in how many string

111

and disk failure a RAID with a particular stringing scheme can survive and how many
reconstructions step might be necessary to recover data in the worst assumed case. We
demand that strings have the same size, to allow for load distribution schemes based on
address translation. While a final design might use more than our three level hierarchy of
support (full RAID, strings, disks), we want to maximize the size of the string to make best

use of reliable power and cooling.

5.2.2 Maximum Tolerance against String Failures

The minimum number of disks, whose failure induces data loss is three. In section
5.3 we introduced the notion of a triangle, a set of three disks, one of which is an informa-
tion disk and the other two of which are check disks located in the same row and in the
same column. (See Figure 5.3, upper left corner.) Inavailability of the disks in a triangle
constitutes data loss. If all three disks in a triangle are located on different strings, then the
failure of the three strings implies data loss. If all or two of them are located in the same
string, then failure of one or two strings can lead to data loss. Hence we can draw the easy

conclusion that in any stringing scheme failure of any three components causes data loss.

5.2.3 Tolerance against Single Disk and String Failure

Tolerance against single disk and simultaneous string failure is a minimal require-
ment for two dimensional RAIDs. We derive a mathematical criterion for such a stringing

scheme in Section 5.4. Schemes exists for any parameter n. We give an example in 5.1.

5.2.4 Tolerance against Two String Failures

The stringing scheme with the highest reliability exhibit tolerance against simul-
taneous failure of two strings and, consequentially, against failure of any two components.
We present stringing schemes with that level of tolerance in Section 5.5. While we are only
capable of presenting schemes with the maximum number n disks per string for unusable
small RAIDs, we can find manually examples with smaller string size for most important
values of n. These schemes actually present the advantage of less reconstruction steps in
the case of two string failure. We investigate the reliability of RAIDs given there in Section

5.5.3.

112

Q000000
Q000000
Q000000
000000
Q000000
Q000000
Q000000
Q0000000
Q0000000

000000
000000

Q000000
000000
Q000000
000000
Q000000
Q000000
Q000000
Q0000000
CXON JONORORCR)

000000
COe00000O0

Figure 5.4: Two 5 DFPs Containing Two Triangles and a Quadrangle.

5.3 Disk Failure Patterns

5.3.1 Definition

A Disk Failure Pattern (DFP) is a set of disks in the RAID, whose failure would
lead to irrecoverable data loss. A Minimal Disk Failure Pattern (MDFP) is a disk failure
pattern that does not contain a smaller disk failure pattern. For example, the set of all
disks is trivially a disk failure pattern, but not a minimal disk failure pattern.

It is easy to describe all MDFP. A n-gon (with n > 3)is a set of disks in the RAID,
that are the vertices of a path through the RAID, which alternatively follows the rows and
the columns. In a closed n-gon, all the disks in the n-gon are information disks and the
path is circular. In an open n-gon the endpoints of the path are check disks and the middle
points are information disks. We give examples for the smallest n-gons in Figure 5.3. A
fundamental result is now that the MDFPs are exactly the open and closed polygons. The

proof is straightforward, but not illuminating, and hence omitted.

5.3.2 Enumeration of MDFP and Reliability Bounds

We count the number of MDFP with a given number of elements for a two-
dimensional RAID with n x n information disks (and a total of n? + 2n disks.) Given
this number and the total number of failure patterns for disks, we calculate the reliability

of a static RAID and a RAID with complete address translation. We give the data loss

113

probabilities for RAIDs with 36 and with 100 information disks (and 48 and 120 resp. disks
total) for comparison purposes. At this point, we neglect string failure completely, hence we
are giving optimistic bounds. The numbers for the balanced RAID (full address translation)

are based on 1000 tracks.

3 Disks Failure Patterns: The only disk failure patterns with three disks are the open

triangles. There are n? of these, corresponding to the choice of the one information disk,
whereas there are nt —Iz; 2n possible patterns of three failed disks.

4 Disks Failure Patterns: A 4 DFP either contains an open triangle, when it is not
minimal, or is an open or closed polygon. There are n? open triangles and an additional
choice of a single disk among all those not on the triangle yields a count of n%(n? 4 2n — 3)
for the 4 DFP containing an open triangle. There are two kinds of open quadrangles; one
kind has the end points in the right check disks, the other in the lower check disks. A
quadrangle of the first kind is determined by one column and then by two disks in this
column. We count n*(n — 1)/2 for the first kind and n*(n — 1) for all of them. A closed
quadrangle is determined by two columns and two rows of information disks. Hence, there

are n?(n — 1)?/4 of them. The total number of 4 DFP is

#(4 DFP) = n*(n* + 2n - 3) + n*(n — 1) + n*(n — 1)?/4

5 Disks Failure Patterns: There is only one 5 MDFP, the open pentagon. There are
characterized by first choosing the middle vertex and then another information row and
column. We count n*(n — 1)%. Non minimal 5 DFPs contain either a 3 or a 4 MDFP. We
counted n?(n—1)+n%(n—1)?/4 quadrangles. We multiply this number with the possibilities
for picking an additional disk and obtain n%(n — 1)(1+ 271)(n? + 2n — 4) as the count for
5 DFPs containing a quadrangle. Alternatively, a 5 DFP contains a 3 MDFP. If we just
enumerate n?(n* + 2n — 3)(n? + 2n — 4)/3 we count certain failure patterns several times.
This type is exemplified in Figure 5.4. (The circles represent disks, the last row and the last
column are the check disks.) This class contains failure patterns with two triangles and a

quadrangle. They are given by either one of n rows and 2 of n columns or vice versa. This

114

© 00
© 00

@)
@)

® O O O O

© O O OO0 OO0

O
O
O

Figure 5.5: Calculation of 6 MDFP

O O O O OO0 OO0
©O O O O OO0 OO0

o O O P O

O O O O O O O O O
O O O O O O O O O
e/ O O O O O
O O O P O O O O O
O O O P O O O O O
O O

O ®

5 §

O &

O O O O P O

O O O O ®

O O O O O O O O O
O O O O O O O O O

puts their number at n*(n — 1). Our grand total for 5 DFPs is

n—1

4

2 (n? 4 2n — 3)(n? + 2n — 4)
2

#(5 DFP) = nZ(n— 1)2—|—n2(n— (14)(n2+2n—4)

—2n*(n—1)

6 Disks Failure Patterns: An open hexagon whose end vertices are in the row of check
disks is determined by (1) choosing a starting disk in this row of check disks, (2) choosing
another disk in the same column, (3) choosing another disk in the same row, (4) choosing
another disk in the same column, which has to be in a different row than the one picked
in step (2), (5) choosing another disk in the same row, which again has to be in a different
column than chosen in step (3). There are hence 2n? * (n — 1) x (n — 2) possible paths
through the RAID defined by our procedure. As a hexagon can be traversed two ways,
counting the possible paths, as we just did, overcounts by a factor of two. On the other
hand, there are as many open hexagons based on the lower check disks as there are those
based on the right check disks, and we obtain a total of 2n? * (n — 1)? % (n — 2) for the open

hexagons. (The counting procedure is illustrated in Figure 5.5.)

115

0000000
O00000e
Q000000
Q000000
0000000
Q000000
Q000000
0000000
000000 e
Q000000
Q000000
C00000e
Q000000
Q000000
Q0000000
Q0000000

@)
@)
@)
@)
@)
@)
@)
@)

0000000 e

CO00000O0 000000
Ce000000 CeO00000O0

Figure 5.6: 6 DFP with Two Disjoint Triangles and with One Quadrangle and One Triangle

A closed hexagons is similarly given by a path. (1) We pick one information disk,
then (2) another one in the same column, from there, (3) a third one in the same row,
(4) the fourth one in the same column, but not in the same row as the first and the second
disks, and (5) the fifth one in the same row, but not in the same column as the second
and third disks. The sixth disk then has to be located in the same row as the first one
and in the same column as the fifth disk. The number of paths defined in this manner is
n?(n — 1)%(n — 2)2. For any given closed hexagon, there are six different paths (which only
differ in orientation and starting point) enumerating the vertices of the hexagon. We have
to divide our paths count by six to obtain the number of closed hexagons.

We now need to count the number of 6 DFPs which are not minimal. Without

adjustment for overcounting, we obtain

5(n? 4 2n —3)(n? 4+ 2n — 4)(n? 4+ 2n — 5)
n
6
n—1.n?+2n—4)(n? 4+ 2n - 5)
)
+ ni(n—1)*(n* +2n - 5)

+ ni(n—1)(1+

non-minimal 6 DFPs. The summands in the formula corresponds to triangles, quadrangles
and pentagons. Adjusting for the overcounting is an arduous procedure.
First, there are 6 DFPs with two triangles. As we have seen previously, there is

a class of 5 DFPs that contain two triangles and a quadrangle. By adding one more failed

116

0000000
Q000000
Q000000
Q000000
000000
000000
Q000000

@)
@)
@)
@)
@)
@)
@)
@)

Q0000000

CO00000O0
CO0000e0O0

Figure 5.7: 6 DFP consisting of two quadrangles

disk, we count n*(n — 1)(n® +2n — 5). We have to diminish our total by twice this number,
because we counted them three times in our naive formula. The other possibility for a 6
DFP with two triangles consists of two disjoint triangles. (See Figure 5.6, left.) There are
n?(n — 1)?/2. Another set of overcounted 6 DFPs consists of a closed quadrangle and a
triangle. (See Figure 5.6, right.) At the same time, they also contain a pentagon. There is
one possibility to install a triangle on top of a quadrangle for each of the four quadrangle
corners, so that we put the number of these patterns at n%(n — 1)%. We have to subtract
twice this amount from our grand total. We give an example for a 6 DFP consisting of two
quadrangles in Figure 5.7. They are enumerated by either choosing three of n 4+ 1 rows and
two of n columns or two of n rows and three of n+1 columns. The count is (n+1)n?(n—1)2.

After taking all these adjustments into account we enumerate

#(6 DFP) =
n?(n —1)%(n — 2)?

n*(n—1)*(n —2) +

2 (n? +2n — 3)(n* + 2n — 4)(n* + 2n - 5)
6
n—1 n%+2n—4)(n?+2n—5)
)
+ ni(n—1)*(n* +2n - 5)

+ ni(n—1)(1+

n%(n —1)?

— 2 (n— 1)(n* 4+ 2n - 5) - 5

— 20%(n— 1) = (n+ D)n*(n - 1)?

117

for the number of 6 DFPs.

5.4 A Stringing Criterion for Tolerance against One Disk

and One String Failure

We first introduce cartesian coordinates to describe the location of a disk with
respect to reliability groups. Let disk D; ; denote the disk in the i*h horizontal reliability and
jt* vertical reliability group. We designate with D; p+1 the check disk in the ith horizontal

reliability and with D4, ; the one in the jt" vertical reliability group. We first need a

technical definition:

Definition 1 A Triad is a set of three disks {D; ;, D;r, Dy ;} with (pairwise) different
i,7,k, 1.

Every triangle is a triad, but a triad is a triangle only if the two “end-pieces” are

check disks. We can now formulate our criterion:

Theorem 6 A stringing which allows the RAID to tolerate simultaneous failure of any

single disk and any single string failure is characterized exactly by the following properties:
1. No string contains a triad.
2. No string contains both a check disk D; 11 and a check disk D; 1.

3. If a string contains a check disk D; 41 it does not contain any disk D; ; in the same

row.

4. If a string contains a check disk D, ; it does not contain any disk D; ; in the same

column.

Proof: The proof makes use of the simple observation, that any failure pattern that leads
to data loss contains an information disk, whose contents cannot be restored, and that this
implies that another disk in the same row or column has failed.

“=": Assume that a stringing shows the necessary failure tolerance. We show, that everyone

of the criteria cannot be violated.

118

1. If a string contains a triad, assume that the string has failed. If the triad is already
a triangle, the RAID experienced data loss. If not, then complete the triad to form a

quadrangle and assume that the additional disk has failed. This leads to data loss.

2. If a string contains both a check disk D; 41 and D, ; then failure of the string and

disk D; ; causes data loss.

3. If a string contains the check disk D;,1; and the information disk D;; then failure

of this string and D, ; gives raise to data loss.

4. The same argument applies mutatis mutandis to columns.

“<": Assume that data loss in disk D;; has been occasioned by the simultaneous failure
of a string and a disk. We now distinguish several cases, which will show that one of our
criteria has been violated.

Case 1: Assume that D;; was the additional disk. The string then contained disks in the
same row and the same column.

Case la: One of these disks is a check disk.

Let us assume that D; ,4; is in the string. (The column case is treated strictly analogous.)
Another disk D; ; has also to be on the string, or data D; ; would not have been lost. If this
disk is a check disk (I = n + 1) criterion 2 is violated. If not, then D;; is an information
disk and another disk D;; has to be in the string. But then the three disks D; ;, D;; and
Dy, form a triad.

Case 1b: Disk D; ; has failed and information disks D;; and Dy, ; are located on the string.
We conclude that in both the [** column and the k** column another disk of the string is
located. Unless criterion 2 is violated, at least one of these is not a check disk. We treat
only the case that the information disk D;,, is situated on the string. Because the data
on this disk cannot be restored, A further disk in the same vertical reliability group has to
belong to the string, so that the string contains a triad.

Case 2: D; ; is based on the string.

Then there are disks D; ; and D; ; which have lost data as well. If both belong to the string,
the string contains a triad. So assume, that D, is the additional failed disk. (The other
case is treated analogously.) We find ourselves back in case 1 unless D, is a check disk,

that is £ = n + 1. Either D;; is a check disk as well (in violation of criterion 4) or it is an

119

information disk, whose data cannot be restored. In the latter case, another disk in row /
has lost data and must be on the string, which then contains a triad. We have accounted

for all possible cases. m

\ | ¢
aifmy \®‘ — 2 -
\ | C
N L L J
s | D = @D ! Reliabiity
\ } | c } Group
L>{J>{i:/f:/f:/f\
- Oy 5 =
\ | C
C || C ‘ C C
Reliability
Group

Figure 5.8: Walt Burkhard’s Stringing Scheme for a Two-Dimensional RAID Tolerating

Failure of Two Strings.

We can use the theorem to give an upper bound on the number of disks in any
stringing arrangement, even those without equal number of disks in a string. Because no
string can contain a triad, once a disk in a certain row and column has been placed into
the string, then either the row or the column can contain no further disk. The shape of the
largest string thus consists of a row with the exception of one disk and the column where
this disk is lacking. Thus the string size cannot exceed 2n. As the RAID cannot be tiled
with strings of the proposed form, we cannot exceed a fixed string size of 2n — 1. The real

number is much smaller, as it needs to be a divisor of 2(n + 1).

5.5 Criterion for Tolerance against Two String Failures

A stringing scheme with the stated tolerance against two string failures satisfies a
fortiori the criteria laid out in Theorem 6. As the number of disks lost in a failure that did
not lead to data loss cannot exceed 2n, the level of redundancy, a stringing scheme with

equal numbers of disks per string cannot exceed n.

120

1 2 3 4 5 6| 9

T 1 2 3 4 5|9

g8 7 1 2 3 41|10

3 8 7 1 2 610
10 6 5 7 8 12| 4

6 12 9 5 9 8|10
11 11 12 12 11 11

Figure 5.9: A stringing scheme for the two-dimensional RAID scheme with 36 disks capacity,

that tolerates failure of two strings and consists of 12 strings with 4 disks each.

5.5.1 Schemes with Maximum Number of Disks in a String

We are only able to give organizations for small numbers of n. The biggest orga-
nization was found by Walt Burkhard and is presented in Figure 5.8. We conjecture, that
this is the maximum number n for which such a scheme exists. We have written a search
program that starting from an assignment with a high degree of tolerance against two string

failures tries out random alterations and that so far has performed unsuccessfully.

5.5.2 Schemes with a Smaller Number of Disks in a String

Stringing schemes with a smaller number of disks per string constitute an alterna-
tive to ones with n disks per string. Because the number of disks in a string is a divisor of
n(n + 2) solutions will depend on the prime factorization of n. If n is the lower of a pair of
primes (e.g. 11) then this approach is impossible.

We have written a small computer tool, that checks the failure tolerance of a
stringing scheme. Starting from a heuristic stringing assignment we then try to heal conflicts
(that is: cases in which loss of two strings leads to data loss) by small permutations. For a
design of a production line scheme, this semi-manual approach can clearly be transferred into
a CAD tool based on Simulated Annealing and find an assignment maximizing secondary
goals like the maximum or average number of data recovery operations. In general, we can

observe that with this less ambitious approach, these two numbers are lower.

121

5.5.3 Markov Models for the Reliability of the Stringing Schemes offering

Two String Failure Resistance

The Markov model for the reliability of a stringed RAID differs from the prelimi-
nary investigation of an unstringed RAID (see Section 5.1.) In a stringed RAID, failure of
any number of disks located on only two strings can never lead to data loss, whereas the
other model assumed that to happen with quite a large probability. If we know, however,
that disks on more than two strings have failed, then we can give rather accurate data loss
probabilities. Because the different schemes exhibit non-scalable parameters as the number
of strings or the number of disks per string, we will give our calculations in Tables 5.5, 5.5.2
and 5.5.2.

First we derive the Markov model for the RAID with stringing scheme shown in
Figure 5.5. As we had calculated before, there are 36 triangles. If three disks on three
different strings have failed, (14080 cases), the probability that these three disks form a
triangle is about 0.2% individually and about 92.3% for a RAID with address translation
and 1000 tracks. The probability calculation is based on the assumption, that our address
translation scheme maps every set of three disks on three different strings to another set of
three disks on three different strings with the same probability. The analogue assumption
for larger numbers of disks located in more than three disks remains only approximately
valid. We give the results of our probability calculations in Table 5.3. (The last line in part
(c) shows effects of rounding errors, that however do not effect the veracity of our Markov
model based calculations.) The difference to the values in Table 5 are minimal. We then
translate these probabilities into the transition probabilities to the Failure State from states
in our Markov model, that only reflect disk failures.

In contrast to the “disk failures only” approach in Section 5.1 we need to include
states in our Markov model that correspond to one string failure in conjunction with disk
failures. As long as the additional disk failures befall only one additional string, data loss
is impossible.

Let us first consider the easiest case of a string failure and two additional disk
failures on two different strings. The failures make up a triangle, if either both additional
string failure are check disks or if one is a check disk and the other one is located in the same

row/column, and, in addition, if one of the disks on the failed string makes up the missing

122

Number of | Probability Probability
Disk Failures (static) with Address Transl.
(a) 3 0.002556818 0.922702404
4 0.010659466 0.999977828
5 0.031604675 1.0
6 0.074544829 1.0
Number of | Probability Probability

Disk Failures (static | with Address Transl.
(b) 3 0.00094451 0.611303469
4 0.00395790 0.981046289

5 0.01179252
6 0.02783050

Number of | Probability

0.999992951
1.000000000

Probability

Disk Failures (static | with Address Transl.

(o) 3 0.00041834 0.341919198
4 0.00180099 0.835133097

5 0.00537842 0.995451416

6 0.01267302 0.999997109

Table 5.3: Data loss Probabilities of Disk Failures for the RAID with (a) 12 Strings with 4
Disks each, (b) 16 Strings with 5 Disks each and (c) with 20 Strings with 6 Disks each

vertex. If the stringing scheme consists of s strings of length [disks, then this probability
is given by:

Prob B 3n-n 1
robpL = (n?2+2n)(n?+2n-1) s—2

where the first factor is the chance that either the two additional disks are both check disks

or one is a check disk and the other is in the same reliability group. The probability applies

to static RAIDs (without address translation) and needs to be translated into the much

higher one We give the relevant probability for the RAIDs under consideration (Figures

5.5, 5.5.2 and 5.5.2.) While the effective data loss probability is high, we need to look at

one case further, in order to maintain our high standards of accuracy for Markov models.
So, assume that three additional disks on at least two strings have failed. With

probability

n? 4+ 2n -

3

123

RAID String String
Size 4+ 2 Disks | 4+ 3 Disks
36412 Disks | 0.991759791 | 0.999999937
64416 Disks | 0.886089217 | 0.999598449
100420 Disks | 0.688954212 | 0.979035703

Table 5.4: Data Loss Probabilities for the three RAIDs with a String Failure and additional

Disk Failures. (The third column is a Lower Bound.)

Disk MTTDL MTTDL MTTDL
Array (in years) (in years) (in years)
Organization Super Strings Hard Strings Soft Strings
48 disks 869.91 374.02 120.86
48 disks (SDS) 1120.32 685.01 254.77
80 disks 448.47 129.26 36.91
80 disks (SDS) 1025.84 320.10 84.96
120 disks 213.95 52.35 14.70
120 disks (SDS) 803.62 137.82 33.37

Table 5.5: Reliability of the Three Two-Dimensional RAID schemes developed in this Sec-

tion. Every other row gives the reliability for the RAID with SDS for one Disk.

these three disk failure will cause data loss by itself. We can estimate the probability of
data loss caused with involvment of the failed string to be at three times (3 choose 2)
the probability given in the preceding paragraph. This is a lower estimate that disregards
quadrangles at all, but it is (barely) adequate to assume data loss in these cases for the
RAIDs which use address translation. We thus can forego a more detailed but very difficult
calculation.

The resulting Markov model is given for the largest of our three RAIDs in Figure
5.12. We only show transitions that have a non-negligible probability, under which we
understand any marginal transition probability, that needs to places after the decimal point

to be represented. We give the results of our reliability calculations for the three sample

RAIDs in Table 5.5.

124

1 12 3 4 5 6 7 16|11

0 13 2 3 4 5 6 7|11
6 9 1 2 3 4 5 8|13
T8 9 1 2 3 16 5|14
9 7 & 9 11 2 3 612
6 10 7 &8 13 9 11 12|14
4 2 14 10 15 8 16 12|13
12 14 11 15 1 14 4 6|13
15 1 10 5 10 16 15 15

Figure 5.10: A stringing scheme for the two-dimensional RAID scheme with 64 disks ca-

pacity, that tolerates failure of two strings and consists of 16 strings with 5 disks each.

14 15 3 4 5 6 18 9 17 10|11
12 1 2 3 4 5 6 7 8§ 9|17
8 16 1 2 3 4 5 6 7 8|9
12 11 14 1 2 3 4 5 6 7|13
9 10 11 13 1 2 3 4 5 14| 7
§ 17 10 16 12 1 2 3 4 13|14
19 18 9 13 11 16 7 8 14 15|10
1 19 12 14 15 18 16 17 1 12| 8
6 20 19 16 17 15 10 13 18 6 |11
10 12 17 18 16 7 8 19 13 15| 9
5 2 20 15 19 20 20 20 20 19

Figure 5.11: A stringing scheme for the two-dimensional RAID scheme with 100 disks

capacity, that tolerates failure of two strings and consists of 20 strings with 6 disks each.

120\ 1197 118\ 77>\ 3.2\
OLOEOED Q Q
40\ 86.9A 111.8A
20u ul 19u 2u +20u\ +20u / +20u 113 A
18
- D) ————a Data 113)\.,,20“
114\ 113\ Loss

19ul /
108A+18

Figure 5.12: The Markov Model for the two-dimensional RAID with 20 strings with 6 Disks

each. We only show transitions with non-negligible transitions.

125

Buper Hardened Strings Super Hardened Strings
1000 1000 Hardened Strings
w w
g g ft Strings
2> 2
P P}
e Hardlgned Strings e
£ 500 g = 500
= =
Soft Strings
0 T T T T T 0 T 1
0 20 40 60 80 100 10000 100000 1000000

Repair Time (hours)

Disk MTTF (hours)

Figure 5.13: Impact of Repair Time and Disk MTTF on the Two Dimensional RAID with

48 Disks and 12 Strings

126

Super Hardened Strings

.\

1000 1000

Super Hardened Strings

§ §
> Hardened Strings >
))
= =
= 500 = 500
= = Hardened Strings
Soft Strings] Soft Strings
0 T T T T T T T T T T 0 T T T T T T T T T T
0 2 4 6 8 10 0 20 40 60 80 100
Reconstruction Time (hours) Repair Time (hours)
Super Hardened Strings
Hardened Strings
Soft Strings
w
g
_I
[a]
'_
'_
=
0 T T]]
10000 100000 1000000

Disk MTTF (hours)

Figure 5.14: Impact of Reconstruction Time, Repair Time and Disk MTTF on the Two
Dimensional RAID with 48 Disks and 12 Strings with SDS (1 Disk)

127

Super Hardened Strings
Super Hardened Strings
1000 1000
w w
g g
é é Hardened Strings
£ 5004 £ 500+
= =
Hardeneq Strings
Soft Strings
0 0 T] T T
0 20 40 60 80 100 10000 100000 1000000
Repair Time (hours) Disk MTTF (hours)

Figure 5.15: Impact of Repair Time and Disk MTTF on the Two Dimensional RAID with

120 Disks and 20 Strings

128

Super Hardened Strings
1000 1000
w w
o Super Hardened Strings
= =
= 500 = 500
= =
Hardened Strings
Hardened Strings
0 — T T & almng§_l 0
0 2 4 6 8 10 0 20 40 60 80 100
Reconstruction Time (hours) Repair Time (hours)

Super Hardened Strings

1000

Hardened Strings

500+

MTTDL (years)

Soft Strings

T N | T A |
10000 100000 1000000
Disk MTTF (hours)

Figure 5.16: Impact of Reconstruction Time, Repair Time and Disk MTTF on the Two
Dimensional RAID with 120 Disks and 20 Strings with SDS (1 Disk)

Chapter 6

Addressing in Detail

6.1 Address Translation Schemes

The busiest device limits performance in a RAID. In the naive RAID 4 organi-
zation, check disks will become hot spots during a write burst: Each write request to a
disk in a reliability group will have to read and then write the check disks. As long as the
ratio of check disks to information disks does not mirror the resulting loads, either check or
information disks will become a bottleneck. As we have seen, RAID 5 solves the problem
by distributing the amount of check and information data and thus the load equally among
disks.

Once this bottleneck has been removed (in the RAID 5 organization) reconfigu-
ration of failed disks causes another variety of hot spot. Reads to the failed disk result
in reads to all the disks in the reliability group and double the read load there. We have
investigated RAID schemes that use address translation to place reliability groups over all
disks. As we have seen, there is a noticeable decrease in reliability as measured in data
loss. Of course, the chance of losing a single small file are not dependent on the placement
scheme.

We can view the RAID 5 solution as the introduction of an abstraction layer and
then distinguish between two conceptual levels or views of the disk farm, a “logical” and
a “physical” one. A logical address consists of a string address, a disk in string address,
a track address, and a block in track address to determine the location of a block. This

block address is then translated to a physical block address. The left portion of Figure 6.1

128

129

String Disk Track Block String Disk Track Block
on on
String String
|0101|0110 |1011101101 |1101| | 0101|0110 |1011101101 |1101|
H/\ : \ : W \ \ :
| 1001|0011 |1011101101 |1101| | 1001|0011 |1011101101 |1101|

Figure 6.1: Two Address Translation Schemes: RAID 5 (left) and Almost Complete Address

Translation.

presents the Level 5 addressing scheme. Based on the track address, the string address is
changed by adding the track address modulo n to it. This moves the location of the check
information cyclically to the right. The advantage of the RAID 5 addressing scheme is its
simplicity. In the literature it is not interpreted as an address translation scheme.

The right portion of Figure 6.1 presents the Almost Complete Addressing Trans-
lation Scheme (ACATS). Depending on the track address, the string and the disk in string
addresses are permuted. In the next sections we will discuss implementations of this scheme.
The Complete Addressing Translation Scheme unifies the string and the disk in string ad-
dress to a disk address and permutes disk addresses in dependence on the track address.

The two schemes differ in their sensitivity to string placements.

6.2 Pseudo-Random Permutations

In this section we investigate one implementation scheme for the Almost Complete
Address Translation. In general, ACATS can be based on a table look-up as is used for the
mapping of virtual to actual addresses in Virtual Memory implementations. As for these
page tables, the size of the table can be prohibitive. For our sample RAID, the table can
easily take up more than 100 KBytes. We can compress the table by using cyclic permuta-
tions: The string permutation table entry applies to n (the number of strings) consecutive

track numbers. All in-string permutations 7 are fixed, but the string permutation o is

130

followed by a cyclic permutation, which adds a constant ¢ (with 0 < 7 < n) to the string
number modulo n. This scheme reduces the size of the table to 1/n of the original size.

We measure the goodness of an ACATS implementation by the frequency in which
the same track on two arbitrary disks are grouped in the same reliability groups. In a perfect
scheme, this frequency is independent of the two disks, in a good one, this is approximated
very closely.

Our alternative to a table look-up, uses a simple algebraic formula like the ones
generating the cyclic permutations used for the address translation in RAID 5. The draw-
back to this approach is the difficulty to find a good formula. As the number of tracks (500 -
2500) is far smaller than the number of possible assignments, formulae that just enumerate
are of little use.

Our approach is very similar to the one used in very fast random number genera-
tors. When speed is of greater importance than goodness, most random number generators
use the “linear congruence method.” In these methods, the next random number r,; is

calculated from the previous random number r, by means of a linear congruence:
Tnt+1 = (multiplier * r,, + addend)% modulus

where the multiplier, the addend and the modulus are We will use even simpler generators
of the form:

rn, = (multiplier * n 4+ addend)% modulus

b tandom number. Of

We only have one arithmetic statement to execute to obtain the n?
course, a sequence from these kinds of generators will fail almost every randomness test,
including that of not working really well for us.

We now convert the random number into a permutation of the strings and the
disks inside a string. The basic idea is to use a numeric encoding of a permutation of
{1,2,...,k} that assigns each permutation a unique number between 1 and k!. We then
pick the permutation by its encoding.

Numbering schemes for permutations are well known. We present one due to

Knuth ([18]) in Figure 6.2.

131

6.3 Evaluation of Pseudo-Random Number Based Schemes

Experimental results suggests that the pseudo-random number based addressing
schemes work very well for one step translation. Using the scheme in two step translation,
where we first permute the string addresses and then the disk in string addresses is more
difficult. If there are only 5 disks in a string, there are only 120 permutations of these 5
disks. This and the simple structure of our number generator cause dependencies among the
permutations to become visible. We give an example in Figure 6.3: Certain disks on strings
5 and 10 will never be in the same reliability group as disk (0,0). The underlying RAID has

11 strings with 5 disks each. The addressing scheme only uses the cyclic permutation
t— (i+1t) (mod 11)

with track number ¢ for the permutation of the strings. This assures us that every string
will be the string of checks with equal probability. However, it also brings out dependencies
among random numbers, which are obtained using our simple multiplication scheme. The
disk 4 will never be in the same reliability group than disk (0,0) for strings 5 and 10.

We can overcome this difficulty by generating the random permutation of disks
in a given string out of order for the same track number. The result of one such choice is
shown in Figure 6.3.

The best solution is however to use one random number generator that assigns all
disks permutations at the same time. The values in Figure 6.3 are obtained by obtaining one
long string for each track number, (by multiplying the track number with powers of large
primes) that is then translated into disk-in-string permutations. This solves the problem of
low-bit dependencies of the random numbers that shows up in terms of disks being much
more or much less frequently grouped in the same reliability group.

The example in Figure 6.3 is chosen without search for the most suited parameters
used inside the random number generator. Given the dimension of the RAID, we would
start a lengthy search to find those that show consistent good spread of reliability groups

for all physical disks.

132

void generatePerm(int f,int p[n])

{

for(r=1;r<=n;r++) plr] = r;

for(r=2;r<=n;r++)

{

s = f mod r;

f = f/r;

swap(plr],plsl); }

Figure 6.2: Knuth’s Enumeration Algorithm in Pseudo-Code generates Permutation p from

integer f. The permutation is an integer array whose indices range from 1 to n.

11 (o]
2] [o]
3]1[o]
4] [0]
5]1[0]
6] [0]
7]1[0]
8] [0]
9] [o]
[10] [0]

r-. r r1 r1 r1 r—1 /i r1 o

0] [0]11000

200
200
150
125
125
175
175
100
250

125

olf1l o
11[1] 75
2111250
31[1] 25
4] [1]1200
51[11325
6] [1]1225
71[11450
8] [1]1250

r-. r r1 r1 r1 r—1+ i ri i

9] [1]1175
[101[1]125

L
L
L
L
L
L
L
L
L
L

olf2] o
1] [2]150
2] [2]1250
31[2]1225
4] [2]225
5]1[2]225
6]1[2]1150
71[2]1 75
8]1[2]1175
9] [2]225

[10]1[2]1375

L
L
L
L
L
L
L
L
L
L

o131 o
1] [3]1300
2131100
3131350
4][3]1175
5131325
6]1[3]1175
7131100
8] [3]1225
91[3] 75

[10]1[31375

L
L
L
L
L
L
L
L
L
L

olf4] o
11[4]275
2141200
3141250
4][4]1275
51041 0
6]1[4]1275
71 [41200
8] [4]1250
9141275

[(10][4] O

Figure 6.3: Frequency of Physical Disks being in the same Reliability Group as Disk [0][0].

The underlying RAID consists of 11 strings with 5 disks. The scheme uses one random

number generator to generate the disk in string permutation.

133

1] [0]
2] [o]
3]1[o]
4] [0]
5] (0]
6] [0]
7]1[0]
8] [o0]
9] [o]
[10] [0]

rr- r, rm rHm r1 1 o

0] [0]11000

210
134
259
191
142
141
194
272
139
205

L
L
L
L
L
L
L
L
L
L

0][1]
11 [1]
2][1]
3]1[1]
4][1]
5]1[1]
6] [1]
71[1]
8]1[1]
9]1[1]

(10][1]

0
168
218
166
179
205
207
157
165
219
151

0] [2]
1][2]
2][2]
3]1[2]
4][2]
5]1[2]
6] [2]
71[2]
8] [2]
9][2]
[10][2]

r. r» r—m rrm r1 1o e

0
189
184
207
249
167
165
252
210
188
186

0][3]
1] [3]
2]1[3]
3]1[3]
4] [3]
5]1[3]
6] [3]
7]1[3]
8]1[3]
9]1[3]
[10][3]

0

191

235

244

126

259

259

125

232

226

196

L
L
L
L
L
L
L
L
L
L

0] [4]
1] [4]
2][4]
3]1[4]
4] [4]
5]1[4]
6] [4]
7]1[4]
8]1[4]
9]1[4]

[10] [4]

0
242
229
124
255
227
228
272
121
228
262

Figure 6.4: Frequency of Physical Disks being in the same Reliability Group as Disk [0][0].

The underlying RAID consists of 11 strings with 5 disks. We use now a different permutation

of strings.

134

1] [0]
2] [o]
3]1[o]
4] [0]
5] (0]
6] [0]
7]1[0]
8] [0]
9] [o]
[10] [0]

rr- r, rm rHm r1 1 o

0] [0]11000

200
194
197
196
198
214
165
208
192
203

0][1]
11 [1]
2][1]
3]1[1]
4][1]
5]1[1]
6] [1]
71[1]
8]1[1]
9]1[1]
[10][1]

rr ra» r—m rrm r1 1 a0

0
209
183
197
192
189
203
211
199
199
206

0] [2]
1][2]
2][2]
3]1[2]
4][2]
5]1[2]
6] [2]
71[2]
8] [2]
9][2]
[10][2]

r. r» r—m rrm r1 1o e

0

196

189

215

215

200

215

190

194

198

193

0][3]
1] [3]
2]1[3]
3]1[3]
4] [3]
5]1[3]
6] [3]
7]1[3]
8]1[3]
9]1[3]
[10][3]

0

202

246

198

199

198

192

237

212

205

203

L
L
L
L
L
L
L
L
L
L

0] [4]
1] [4]
2][4]
3]1[4]
4] [4]
5]1[4]
6] [4]
7]1[4]
8] [4]
9]1[4]

[10] [4]

0
193
188
193
198
215
176
197
187
206
195

Figure 6.5: Frequency of Physical Disks being in the same Reliability Group as Disk [0][0].

The underlying RAID consists of 11 strings with 5 disks. This scheme uses one random

number generator to generate all disk in string permutation at the same time.

Chapter 7

Performance Modeling of Write

Synchronization Schemes

We investigate the performance of RAIDs under a load of small read and write
accesses, typically to a single block at a time. An analytic treatment of a more realistic
load is difficult.

Because an exact queuing model is not feasible, we use a “Queuning Network Model”
[20]. Queuing Network Analysis represents a computer system or subsystem as a network of
queues. It makes some simplifying assumptions to form and evaluate the resulting analytical
model, which yields slightly optimistic approximations. It has built a tradition of extremely
valuable results.

While the read operation in a RAID can proceed under normal circumstances as
in any disk farm, the write operation is more complicated. To calculate the new check
data during a disk write we can either access all disks in the reliability group(s) or we can
calculate the data from the difference between the new and the old information data and
the old check information. The first procedure involves many more disk operations and will
only be performed if we write to all disks in the same reliability group, that is, during a
large write in a RAID that involves striping. A naive scheme would read the old information
data and then write the new information data while initializing the read of the check disk at
the same time. Then the new check data is calculated and after one rotation written to the

check disk. This naive procedure actually endangers data on other disks in the reliability

134

135

group. A scenario for this has the RAID lose the new check data before it is being written
(e.g.in a system crash.) Then any loss of information disks in the reliability group leads to
data loss.

We can deal with this danger using a number of strategies.

1. We can reduce the time window of vulnerability between the write of the information
disk and the write of the check disk as far as possible, that is, within a full rotation
time by synchronizing all necessary writes. A write request would acquire and keep a
hold on all disks involved until all writes have been completed. We will see, that this

strong synchronization scheme has rather disappointing performance figures.

2. Instead of allowing a write request to lock up needed disks, we can use write-restart
synchronization, in which a write request fails provisionally, when one of the needed

disks is busy and is after a short time restarted, until it finally succeeds.

3. We can use a non-volatile cache memory that stores write requests and intermediate

data safely.
4. We can ignore the danger.

We treat failures as unrelated, which makes an argument for the last alternative, but certain
failure modes, e.g. those linked to power surges, will likely affect several components.

We treat two write synchronization schemes, in Chapter 8 and in Chapter 9,
respectively. We discuss the performance without synchronization in Chapter 10. The
results are valid over a broad range of RAID organizations. Only when we discuss the effects
of failed components on the performance and especially during the data reconstruction

process, in Chapter 11, do we observe a strong dependence on the RAID organization.

Chapter 8

Performance with Strong

Synchronization

We investigate here the performance impact of a strong write synchronization
scheme. The bad performance numbers that we obtain indicate the need for a non-volatile
cache.

We assume a disk array with a large number of disks. We also assume a system
of load distribution that distributes the load quantitatively and qualitatively uniformly
through the array. For a classic Level 5 RAID we would consider only one reliability group
at a time and thus treat the RAID as consisting of m (the number of disks per string) distinct
storage units. For a RAID that uses complete or almost complete address translation we use

a model that encompasses the whole array. Our model is more exact in the latter situation.

8.1 The Model

We assume that loads at individual disks are essentially identical and consist of
single block accesses. We model the service times for reads and writes with exponential
distributions. We assume the request arrivals to be Poisson distributed. This leads to
reasonably conservative performance bounds on the system. Furthermore, we assume that
the disks are not synchronized.

A read operation is very straightforward provided no failure has occurred. A single

information disk is accessed. We discuss operations under failure in Chapter 10.

136

137

) Message Disk
queuing .

time ISt waiting is.t
1 2 4
i.s.t internal service time
sein Check Disk
q time 9 i.s.t i.s.t
1 3 5

1: Request queued

2: Old information read

3: Old check data read, check sends delta-ok, message sends delta,
check sends commit-ok

4: New information written

5: New Check written

Figure 8.1: Timing Diagram for an Update Operation in the Strong Synchronization Scheme

We now discuss the update operation. A single write operation has to update
check information as well. If only a single block is updated at a time, the best stratagem is
to use the difference between the new and the old information data (which is stored at the
“message disk”) to calculate the new check information from the old check information. The
write update requires a read and a write at the message disk and all the check disks. The
strong synchronization scheme requires the writes to be performed as much as possible in
lock step. As we assumed that the disks are not synchronized, we cannot even assume that
the rotation phases are finished at the same time. Message and check disks communicate
with signals. When a check disk has read the old check information, it sends a A-ok message
to the information disk. This signals that it is ready to receive the difference between old
and new information data, the A. When the message disk has calculated the A and when
it has received all Delta-ok messages, it sends the A value to the check disk. When all
check disks have sent their commit-ok to the message disk, the message disk will write the
new information. At the same time, the check disks will commit. Hence, the protocol has
all necessary changes made at almost the same time. In the worst case, the disk writes
will be spread out over one full rotation time of the disk (2 latencies.) Our scheme makes
check or message disks likely to wait for the other disks to catch up. We call this time

the “synchronization time” to distinguish it from the waiting time, as this term is used

138

) Message Disk

queuing)]

time 1.s.t 1.s.t
1 3 5

i.s.t. internal service time
in waitin Check Disk

queuing - waiting ¢

1 2 4

1: Requests queued

2: Old check read, delta-ok sent,
3: Delta sent, commit-ok sent

4: New check written

5: New information written

Figure 8.2: Timing Diagram for an Update Operation in the Strong Synchronization Scheme

in queuing theory. (There it refers to the time between the entrance of a request in a
server queue and the execution of service; some authors use “queuing time” instead.) The
synchronization time represents the cost of synchronization for the disk write operations.
We illustrate the scheme for a single check disk with two timing diagrams. The
first is in Figure 8.1. At time 1 a write request is entered in the queue at both the message
and the check disk. In this example, both requests have to wait for the disk to be free. We
refer to this time as the queuing time. The message disk is free first. A seek phase ensues
which is part of the “internal service time” (i.s.t.). At time 2 the old information is read
and stored in buffer at the disk. The message disk enters the waiting phase. When the
check disk is free, it starts its seek phase. When the old check data is read, it sends the
A-ok message to the message disk, which responds by sending the A between new and old
information data. The check disk acknowledges with the commit-ok signal. The information
disk now writes the new information. The time between the reception of the commit-ok
signal and the actual writing (4) is the time the disk needs to rotate the block again under
the head and is the other part of the internal service time; it can be no longer than two
latencies and is on average one. The check disk will also write its data, but it needs exactly
2 latencies to do so. As we have seen, the internal service time consists of the seek and

rotation times, that would become necessary at the disks without any synchronization.

139

Figure 8.2 shows the timing sequence, if the head at the check disk is the first
to reach the block that is updated. At time 2, the old check data has been read and the
A-ok signal is sent to the message disk. When the message disk reaches the block (3) it
commences the transmission of the A value to the check disk. The check responds with the
commit-ok signal. Now both disks will write the next time that the block appears under

the head, that will take 2 latencies for the message disk and possibly less for the check disk.

8.2 Results

Our analytic model, which is presented in Section 8.3, and our simulation results
presented in Section 8.9 both show rather disappointing performance. With increasing
load, the synchronization time becomes larger. This sets off a chain reaction: The waiting
time for requests at disks increases and drives the synchronization time higher. If the
load continues to increase, the system becomes unstable. Both our analytic model and
the simulation results indicate a catastrophic behavior, in which the performance does not
worsen continually with increased load but just exhibits an instability. Interestingly, the
utilization of disks at this point falls well short of one, which is another indication of the
unacceptable behavior of the system. The maximum tolerable load consisting of writes only
is 35.34% of the theoretically possible one if one check disk is used and of 31.83% if two
check disks are used.

Our results are applicable to a larger class of queuing problems, where a request
needs similar service from two or several servers at the same time. These results are a
variety of the fork-join results.

We have corroborated our theory of the system behavior by simulation for both
exponentially distributed service times and by using a different service time (constant +
uniform service time). In addition we derive a lower bound that is independent of the
service time distribution (Section 8.4.) In each case an instability of the system is observed.

Our model’s weakness is the somewhat unrealistic assumptions on the load. A
more realistic model would include at least directory reads before some writes. Qur model
instead predicts performance for an extreme case never attained in practise and derives its

value from precisely this point. The use of the exponential (i.e. memory-less) distribution in

140

our model explains the differences between our results and the simulation results. The small
magnitude of the difference justifies our approach. Our model assumes a large number of
disks. It applies to load balanced Level 5 RAIDs as well as to classic Level 5 RAID schemes,

but is more accurate for the former.

8.3 A Queueing Network Approach

8.3.1 Queuing Networks

Queueing network modeling represents a system as a separable network of queues
which is then evaluated analytically. This evaluation is based on simplifying assumptions.
Queueing theory tends to consider a complicated situation at a single server. Queueing
network methodology instead considers many servers with simple characteristics.

We consider requests entering a queue at a server, waiting their time and finally
being served. The time of actual service is called the service time. The response time is the
time from entrance in the queue to the termination of service; it consists of service time and
waiting time. The portion of time, during which the server is busy, is the utilization. The
load or arrival rate is the average number of requests arriving during a time interval. We
make the flow balance assumption which states that load equals throughput, the average
number of requests served. If the flow balance assumption is violated, the server receives

more requests than it can handle.

8.3.2 Notation

We adjust the general queuing network terminology to our purposes: We call the
time, in which the disks are busy actually servicing the request the internal service time.
This time excludes the time spent waiting for the other disk(s) to react, which we call
the synchronization time. We group the synchronization time and the internal service time
together under the name external service time. The external service time can be interpreted
as the time an outside observer would find a disk busy with a single request.

The external response time is the time from the placement of the request in queue
until the disk is released. The internal response time is the external response time minus

the synchronization time.

141

Name Symbol Short Description
Internal Service Time
Service Time D’ as seen by client
External Service Time as seen by
Service Time D other client following in line
Internal Time until no further operation take
Response Time R place at disk in the equivalent scenario
External Time until disks are released
Response Time R from start of request

Table 8.1: Notation for the Queuing Network Analysis of the Strong Synchronization

Scheme

For modeling purposes we use an equivalent scenario. In it the synchronization
time is moved (conceptually) behind the last piece of the internal service time. Then it
appears that requests are serviced independently at the message and the check disks, but
that they do not release the disk until the last one is finished.

Table 8.1 repeats the notation and names the quantities for our analysis in tabular

form.

8.3.3 A Queueing Network Approximation for One Check Disk

Before we give our general result, we introduce our approach for a RAID handling
only write requests and with one check disk per reliability group. We designate the internal
service time at a disk (seek time, 3 rotation times and transmission time) with D’. We
denote with A the load at an individual disk. The disk has a utilization U = AD. With
probability U¥(1 — U) there are exactly v queued clients ahead of any arriving client. Each

of these clients will require D time to leave the disk and the same is true for the current

142

request. Accordingly, the external response time is given as

R = D+D(1-U)> vU¥
v=1
D
1-U
D
~ 1-AD

The internal response time is the difference of the external response time and the

synchronization time, which is the difference between the internal and external service time:
R=R-D+ D

The synchronization time is the difference between the internal response times at the two
disks. As we assume all response times to be exponentially distributed, this time is equal to
R'. Only one of the disks suffers a synchronization time delay. This implies for the external

service time on average

D = 1+(1/2)R

= 1+05(R-D+ D"
The two equations imply the quadratic equation
3AD? — (24 3AD")D +3D' = 0.

We choose the correct root by letting A — 0 and consequentially D — 1 and obtain

(24 3X) — V4 — 24X + 9\2D’
6

D=

The solution D exists only if A < % = .1787 The maximum possible load without
synchronization costs would have been A = 0.5. Our model sets the external service time
at 1.5 and the synchronization time at 0.5 for zero load. Beyond the maximum feasible
load the system becomes instable and cannot keep up with arriving requests. We give the

numerical results in Figure 8.3.

8.3.4 The Queuing Network Approach in the General Case

To extend our approach to more than one set of writes we need to calculate the

synchronization time among several disks. We can show that the average synchronization

143

Relative Response Time

Service Time

Utilization

Load

Figure 8.3: Service Time, Response Time and Utilization for Strong Write Synchronization

(1 Check and Writes Only Load)

time among z different writes is equal to H, — 1, where H, is the z* harmonic number.
We prove the formula in Section 8.7.

We obtain the response times for read and write operations as response times
within a two-population queue in our queuing network. The external service times are D,
and D, respectively. An individual disk sees write and read loads A, and A,. The disk
experiences utilization U = A, D, + A D,. With probability U¥(1 — U) an arriving request
finds v clients ahead of it. The device is busy with probability u, = A,.D, with a read
client and with probability u,, = A\, D,, with a write client. An unknown client will require
external service time D = T D, + ¥ Dy. Accordingly, the read external response time is

given by
R, = D, +D(1-0U)> vU”
v=1
U
1-U
DT + Au)Du)(Du) B DT)
1-U '

= DT—I_ﬁ

We obtain a similar equation for the write external response time:

Du} + ATDT(DT B Dw)

R = 1-U

Now we determine the external service times. Since read operations do not involve both a

read and a consecutive write and as they involve only one disk, the external read service

144

time coincides with the internal read service time and is a fraction a of the internal write
service time I. We are left with the more interesting problem of determining the write

service time. The result in Section 8.7 gives us
(Hy — 1)(Ry— Dy + 1)
for the synchronization time. Accordingly, the external service times are given by

D, = al

Dy = Hul+ (Hy,—1)(Ry— Dy)

The two expressions for D,, derived in this section lead to a quadratic equation, from which
D,, and then D, as well as all the other variables can be determined. The quadratic equation
does not have a solution if the load and the write proportion of the load exceed a relatively

small fraction of the theoretically possible values.

8.3.5 An Example

We assume an actual average seek time of 6 ms (due to locality of disk references)
and a latency of 6 ms. We neglect the transfer time and the controller overhead. The
internal write service time is I = 24ms and the (internal = external) read service time is
D, = 12ms. We assume that the RAID has only one check disk per reliability group and
hence uses two disk writes for a single update operation. We use a read to write relation
of 3:1, that is, 1/4 of all arriving requests at the RAID are writes. Let A be the request
arrival rate at the RAID which has N disks. Fach write request generates 2 individual write

requests at a disk, and the disk loads are

A A
N 3

/\w = ; r = .
2N 4N

We abbreviate A = A/N. We obtain the external write service time

(24 18)) — /356472 — 360\ + 4
32

Dy, =

The equation is solvable only for A < 0.012710531. or A < N -0.012710531. Without

synchronization the disk utilization is 0.5-A-244.75-A-12 = 21X and the maximum tolerable

145

1004

80
Write Response Time

60 -

40+ Write Service Time

Utilization

Read Response Time

T
0.005 0010
L oad

Figure 8.4: Service Time, Response Time and Utilization for Strong Write Synchronization

(1 Check and a Writes Only Load)

RAID request per disk is A = 0.047619048. We observe an interesting phenomenon if we
calculate D,, for the boundary case A = 0.012710531. Then D, = 58.449946164 and the
utilization at each disk is only U = 0.371464926. Accordingly, the system will become rather
suddenly unstable, as the load passes over the critical load value. The one server queue does
not show such a pathological behavior and experiences a more graceful degradation. We

present the development in Figure 8.4. The figure does not represent the final knee well.

8.4 A General Lower Bound for Synchronization Schemes

We have observed that a synchronization scheme between disks renders the system
instable. We now show, that this behavior is general and does not depend on the service
time distribution used. We use a constant service time distribution which will minimize
both queue length on arrival and the synchronization time at load zero. We still assume
that requests arrive in a memoryless way. the queuing theoretical literature calls this kind
of queue an M/D/1 queue (for Markov arrival and Deterministic service time at 1 server.)

Let p; stand for the probability of i new requests arriving at the same time:

A

i = ,—'e_ .
7!

We denote with 7; the probability that at any given time there are 7 requests in queue. As

the arrivals are the result of a Poisson process an arriving request sees the same number

146

Load S Lower Bound
0.000000 0.000000 1.000000
0.050000 0.048814 1.051319
0.100000 0.095527 1.105616
0.150000 0.140580 1.163575
0.200000 0.184473 1.226201
0.250000 0.227781 1.294970
0.300000 0.271185 1.372090
0.350000 0.315510 1.460941
0.400000 0.361790 1.566884
0.450000 0.411375 1.698874
0.500000 0.466085 1.872956
0.550000 0.528492 2.120854
0.600000 0.602402 2.515102
0.650000 0.693751 3.265320
0.700000 0.812409 5.330754

Table 8.2: Lower Bounds for External Service Times in a System with a Large Number of
Devices. Each requests requires synchronized service at two devices. The internal service

time is constant 1. For loads of 3/4 or more, the system is shown to be unstable.

of requests queued as an outside observer. We use conditional probabilities and that the
busy time is1 — uD independent of the service distribution to derive a well known recursive
formula:

T, = PiTo + pi™1 + Pic1T2 + ...+ P17 + PoTigr-

We calculate numerically the probabilities 7;. We give a first estimate of the expected
synchronization delay as the expected difference in waiting time between two customers

entering two different queues. The service time is deterministic 1 and so the waiting time

147

equals the number of customers:

oo oo

S= Z Tk Z(Z — k)m.

k=0 p=l
We add the waiting time and obtain the expected value for the external service time in first
approximation. We now calculate the additional waiting time resulting from the increase in
external service time. Our approximation for the external service time depends on the num-
ber of customers at other disks and is no longer deterministic. It also does not include the
waiting time we just calculated. If we assume that the first approximation is deterministic,
we will underestimate further increases in the waiting time. Because § is the proportional
increase in service time, we calculate the external service time D by an infinite repetition
of the previous step as

= 1
D=2.8"=1"5

The results are presented in Table 8.4. Above 75% of the nominally possible load renders
the system unstable.

This Section shows that a strong synchronization scheme with an infinite number
of servers (e.g. disks in a RAID) with the best possible service time distribution (constant
service time) will not be able to reach full utilization before the queuing network becomes
unstable. The infinite number of servers model approximates the situation very well for
a moderate and larger set of servers. Only for few servers is this approximation bad. If
there are only two servers however, the approximation becomes ludicrously bad, we are
then talking about mirrored disks for which the strong synchronization only means that all
operations are performed in tandem. Apart from this case, the result is strong evidence for

the accuracy of the queuing network predictions.

8.5 Performance with Synchronized Disks

8.5.1 Results

RAID systems can use disk synchronization to keep disks rotating strictly in paral-
lel. Then the overwrites of an update operation perform at the same time. The performance

is improved somewhat by this change.

148

8.5.2 Derivation

We model the new situation by assuming that only the seek and the first rotation
phase Iy of an update operation are exponentially distributed. The second rotation phase
I is uniformly distributed and the same at all disks. We obtain the internal write service
time I as the sum of Iy and [;. We assume that the internal response time R’ excluding I
is exponentially distributed. We obtain the synchronization time by applying our result of
Section 8.7 to the modified internal response time. The new formula for the external write

service time reads now:

S
g
(l

(H, —1)(R' - h)+ I+ L

(HI‘ - 1)(Ru} - Dw) + HI‘IO + Il

The other formulae from Section 8.3.4 are still valid:

Dr + AuJDuJ(Du) B Dr)

R, =
1-U
Dw+A7’DT(D7’_DuJ)
R, =
1-U
D, = I

U = M\ND,+AyDy.

We can solve the system algebraically and obtain a quadratic equation for D,,.

8.5.3 An Example

We modify the example in Section 8.3.5. With the same notation and under the

same assumptions we have:

Ay = 2
2
\ o= 2
4
D, = Iy=12ms
i = 12ms

The maximum load is now A = 0.014720830 which represents a 16% increase in

the maximum load but is still only 31% of the maximum load without synchronization.

149

8.6 Performance of Level 4 RAIDs with Strong Write Syn-

chronization

In this section we consider the performance of Level 4 RAIDs under a Poisson load
of small reads and writes. We use the same locking scheme as before: an update operation
holds all needed disks and finishes within a full disk rotation.

In each reliability group one (or more) disk(s) contain(s) only check information
and is accessed in each update operation.

Our model is similar to the one presented for Level 5 RAIDs. We now have two
classes of servers, the message and the check disks. We distinguish all magnitudes by indices
I and C, if necessary. We give the formulae in a form which incorporates read loads at check

disks, even though normally these are zero.

DT + Aw,IDw,I(Dw,I - D'r)

RT,I = 1-0;
Rio = D, 4+ XycDyc(Dyc — D)
’ 1-Ug
Ry = Dur + A1 Dr1(Dyy1 — Dy 1)
’ 1-U;
Ruo = Dyc+ MNecDrc(Drc— Dyc)
’ 1-Ug

The read service time D, is always constant. The write service time includes the synchro-
nization time. The write response times will differ between message and check disks because

the loads and the utilization do. If I denotes the internal write service time, then

DwJ = I—}—SI(RwJ—D'w,I—I—I,pr—Dw,C—I—I)

pr = I—}—Sc(RwJ—Dw,I—I—I,pr—Dw,C—I—I)

where the synchronization times S7 and S¢ are given and derived in Section 8.8.
Our system of equations is no longer amenable to closed form solution, but can
be easily solved numerically by back-substitution. As should be expected, the performance

worsens even further if the load at check and message disks differ.

150

8.7 Synchronization Time for Identical Distributions

We derive the formula of the expected synchronization time among n indepen-
dently identically exponentially distributed random variables X; with mean QL

We had defined the synchronization time as the time between the execution of
one request and the last of the n — 1 other requests. If we interpret the random variables
as the finishing times of a race, then the synchronization time is the difference between
my time and the time of the last of the other racers to finish. If I am the last, then the
synchronization time is zero.

We call t+ = M% the positive part of a real number ¢, (¢T is equal to ¢ if ¢ is
positive and zero otherwise. We denote the (cumulative) distribution of any of the variables
X; with F, that is,

PX;<t)=1-F(t)=1-e""
The density of a single random variable is f(t) = ae™®'. The distribution of the maximum
of [independently distributed variables is obtained from P(X <) = (1 — e~*Hl with
density f; := lae™ (1 — e_"t)l_l. The expected value of the synchronization time is given
as a Riemann integral. The synchronization time is the expected value for the difference

between the maximum of the [independently distributed variables and a single one.
[[t =0 ns)ds oy

o Jo

| [s = o ns)as

(5 +atem s a_l) fi(s)ds
0
H, 1 1 1
I

S

o} no @
H,-1
a

In the calculation we used

/(s—t)ae_atdt = 3/ ae_atdt—/ tae™ ' dt
0 0 0
t=s
e e

t=s

t=0

= s+ a—le—as _ a—l

151

_ _ d(1—e— s n—1
fOOOa 16 asd(l—e)

ds ds

S§=00

- [a7tees(1 - emeeyn] T /000(1 —emenylemes

s=0

no

- 1/(na)

= 0_|_L/0001fn(5)d8

and
Hn—l
o

/OOO Sfn-1(s)ds =

8.8 Synchronization Time for 2 Classes of Distribution

We develop formulae for the synchronization time for two classes of exponentially
distributed random variables. These represent response times at check disks and the re-
sponse time at an information disk. We only give results for the synchronization between
one information and one check disk and between one information and two check disks.

We have two independent exponentially distributed random variables with ex-
pectation é and one additional independent exponential distributed random variable with
expectation % (These of course represent the reaction time at check and information disks.)
The (cumulative) probability distributions are denoted by /' and G respectively. We have

density
£(t) = ae™
for the first single variable and

g(t) = e

for the second single variable. The maximum of two variables describing check disk response
is

f2(t) = 2ae™ (1 — e7°%).

The maximum of a mixed pair of check and message response times has density

h(t) = ae™® + e Pt — (a + B)el@tP),

152

First we calculate the synchronization times for an update operation that involves
one check and one message disk. The synchronization time at the message disk is

oo OO

Sto= [- vt sedsgnd

Il
o\
8
=)
w
—~
[V
|
o~
S’
N
~—
o~
g
2
o~
~
~—
VY
S
W
[V

We obtain for the synchronization at the check disk mutatis mutandis:

87

Blo+)

We now come to the result that applies to an update operation that involves two

Se =

check and one message disk. The calculation is straight-forward:

For the information disk we have:

Seo= [T [-0t hds gt
= [[=gt p(sas

- [(s+ﬁ1-ﬁs 571 Fals)ds

_ / sfa(s)ds + F (/OOO R /OOO e—(2a+ﬁ)sd5) B %
3,
2
S

L 20, 1 N
t 5l)= 3
7(a,)

a—l—ﬁ 200+ 8

The expected synchronization delay at a check disk is

Se = [[s =0t hsds s
/ / (s — 1) f(1)dth(s)ds
/0 (.s—l—a e~ a_l)h(s)ds

/ .sh(.s)ds—l—/ a_le_ash(s)ds—/ a~'h(s)ds
0 0 0

153

= a7 57 —(atB)7!
+(20) 7" 4 (a4 8)7" = (e + B)(22° + 8)!
_5—1

= :SQ(Q_laﬁ_l)

8.9 Simulation Results

We have tested our analytical results in a variety of settings and have found that the
expected blow-up of the response time happens always for loads shortly after the predicted
maximum load. We present the examples in Figures 8.5 to Figure 8.6

We are simulating a RAID with 100 disks. The latency of the disks is 12 ms and
the maximum seek time 22 ms. We assume a completely random disk accesses. The load
contains a portion of p,, write and p, = 1 — p, writes. We give the load in our scatter
diagrams in terms of RAID requests per millisecond.

In Figure 8.5 we give the results of several simulation runs with a write quorum of
3 (2 Check Disks per Reliability Group) and a load consisting of writes only. The average
service time is 27 ms. Figure 8.6 gives the response times in the same situation with a write

quorum of 2.

154

10000
o
1000
(4]
£
E
g 100
] L 4
?g ooooo“‘..
10
14— T R T
0.0 01 0.2 03
L oad
Write Quorum 3

Figure 8.5: Response Time under the Strong Synchronization Scheme: Write Load only,

Write Quorum of 3.

10000

s ‘oo‘..

1000

Response Time

\.

100

10

1 " T " T " T
0.0 0.2 0.4 0.6
L oad

Write Quorum 2

Figure 8.6: Response Time under the Strong Synchronization Scheme: Write Load only,

Write Quorum of 2.

Chapter 9

Performance under Write-Restart

Synchronization

The disappointing performance figures of strong synchronization arise from the
required synchronization among disks participating in an update. The response time reflects
the time of the slowest participant not only of the actual request but of unfinished update
operations ahead. The write-restart provides much better response times. Here the update
operation can proceed only if all participating disks are idle. The updates are not executed in
arrival order, but the synchronization scheme does not provide any scheduling optimization.
Writes to the same block will be executed in arrival order. There is a small possibility of
starvation which can be thwarted within the implementation. Once a logical write operation
begins, it continues without interruption to completion.

The scheme applies to Level 5 RAIDs as well as to Level 4 RAIDs.

9.1 Derivation of Results

Our analysis of the response times proceeds much as within Chapter 7 and uses
the same notation and assumptions. The external read response time R, is, as in Section

8.2,
_ D, 4+ XyDy(Dy, — D)
B 1-U '

The read service time D, is independent of loads and only a fraction of the internal write

R,

service time [I. Since all disks among an update operation begin together and since we

155

156

assume them to be exponentially distributed, the external write service time would be H, 1.
We can derive a better estimate by modeling only the seek and the initial rotation phase
with an exponential distribution. We decompose the internal service time I into components
Iy and I; where the first component Iy consists of the seek and the first rotation phase.
After both disks have read the block to which we are writing, the operation terminates
with the last disk to write to the block after exactly one full rotation time /. Because the
two seek phases are not synchronized, it does not matter whether the RAID uses rotational
synchronization or not. We obtain a better estimate for the synchronized write service time

(involving z disks) and designate it with F,D,,:
IyDy,=HyIp+ 1.

The utilization U at a disk consists of the read utilization u, = A, D, and the write
utilization w,, = Ay D,,. The loads A, and A, denote the number of respective requests per
time unit at an individual disk. The read service time D, consists only of a seek and a

rotation phase and coincides with Iy. A request of unknown nature takes time
D = (u,J)U)D, + (1, U) Dy

If a write request arrives, it will possibly find both devices idle (with probability
(1 — U)?) and then experience a response time of HyD,,. If only one of the devices is busy
(which happens with probability 2U(1 — U)) we first wait for that device to become free.
This happens after the “stay-busy” time B terminates. At this point, we probe the other
device, which in turn is idle with probability 1 — U. If not, we wait for the stay-busy time
to be over there and reprobe the first device, et cetera, until finally we find both disks to
be free. We use the same probing scheme if originally both devices are busy, only then we
need to wait for the maximum of the busy times, or approximately HyB. Our response time

formula is

Rw - FZDw
+2U0(1 - U)(B+U(B+U(B+...)))
+(1=U)? (HyB+U(B+U(B+..)))

= D,

157

1000 Write Response Time 1000

800 800 —

Utilization (per mille)

600 600 —

Busy Time

400 400 —

200+ 200

Read Response Time

T T T T
0.00 0.02 0.04 0.00 0.02 0.04

Load Load

Figure 9.1: Response Times, Busy Times and Utilization (per mille) for the Write Restart

Scheme with Two Disks

+2U0(1-U)-B->_ U*
v=0

+(1 - U)* - (HB + i BUY)

v=1
= kKD,

1
20(1 — -B
+2U(U) T

BU
1-U)? - (H;B+ ——
HU= V) (HyB 4)

= D, +3UB+(1-U)*HyB - U*B

We illustrate our model for the write restart in Figure 9.1, where we take the seek
time to be 5 milliseconds and the latency to be 5 milliseconds also.

We now amend the formula for writes involving three disks simultaneously. If an
arriving write request finds one or more of the needed disks busy, we wait for all of them to
be done. Then we check whether the other two are still free. If not, we wait for that disk
to be free, and so on. To simplify the formula, we call p;, the probability that exactly ¢

disks out of » are busy at a given moment. This way we obtain:

158

+p13B + p23HoB + p33H3B
+(1 = po3)(p1,2B + p22H2B)
+(1 = pos)(1 — po2)(p1,2B + p22B)

I
1 — po,2
—=(

= F3Dy+p13B+pesHoB + p3ssHsB + (1 — po3))
0,2

P1,2B + p22B)

We calculate the average length of time for a disk found busy to become idle again.
Typically, in the literature, busy time is the time average amount of time a device is busy,

when an arriving request finds it busy. The average number of requests at a busy disk is

00 3) 1
;(yﬂ)b (1-U)= oy
It takes clearing time D/(1 — U) to clear the disk, but in the mean time AD(1 — U)~!
additional requests have arrived. Summing up the resulting geometric series we arrive at
an average busy time of o o
D D

(;) AUEU) (1-0U) (1-0)

The strong write synchronization scheme, which we investigated in the previous

Chapter, exhibited singular behavior. As the load increases over a certain point, suddenly
the expected response time jumps from a finite value to infinity. In contrast, the present
scheme degrades gracefully as we reach maximum load. The repsonse time graphs have a
pole at this point. While the overall performance of write-restart synchronization is still

poor, this facet of behavior is acceptable.

Chapter 10

Performance Without Write

Synchronization

We have used write synchronization to prevent data inconsistencies after a system
crash, which, if not remedied, could destroy the capability of a RAID to regenerate lost data
after some component failure. Our two schemes with write synchronization suffered high
performance losses. The alternative design uses a non-volatile data cache. This solution is
the current state of the art. Our previous results should be interpreted as strong evidence
that no alternative to non-volatile cache is feasible.

In Chapter 4 we have proposed to build the non-volatile data buffer from two
components, a non-volatile data cache and a BIDA (Balanced Information Dispersal Array)
based storage buffer that uses a small portion of the disk space in the RAID. The BIDA
storage buffer serves as an overflow for the non-volatile cache and is somewhat faster than
the RAID itself.

In our performance analysis, we assume that the temporary storage of requests is
not a bottleneck. The analysis is easy and does not depend on all the features of a RAID
architecture. We make our analysis for a storage unit of N disks, organized into n strings
and m reliability groups, so that N = nm. We assume that all N disks are the target of an
update request with the same probability. For a RAID with ACATS for load balancing, the
storage unit is the whole RAID. (Even though most of our RAID organizations do never

pair disks in the same string as message and check disks, the performance calculation does

159

160

not depend on that fact.) For a RAID organization which assigns disks to fixed reliability
groups, the N disk storage unit is the reliability group. We will discuss RAIDs which use
fixed message and check disks further below.

We adopt the same notation as before. An update involves w writes. The system
experiences a load of A requests, of which a fraction p, are read requests and a fraction p,,
are updates. The service time D, for a read request consists of seek time, rotation time
(of one disk latency), the transfer time and excludes control time. The service time D,
for a write operation contains in addition two latencies, because message and check data
needs to be read and processed first before they can be written. We can safely assume that
all processing is done in parallel with disk activities and hence we do not include it in our
performance calculations.

The overall load at an individual disk consists of A\, = p,A/N reads and A\, =
wpyuAJ/N. The utilization U at a disk embodies the read utilization U, = A, D, and the

write utilization U,, = A, D,,; that is,
U=U,+ Uy, = (p Dy + wpyD,)A/N.

A request of unknown nature is with probability U, /U a read request and with probability

U,/U a write request and consequentially takes service time

UTDT + Uwa

D=
U

The read response time consists of the read service time and the time it takes for previous
requests to clear the device. As the average queue length is given by the geometric series

Y ooe, U”, we obtain for the read response time

R, = DT—|—ﬁEU”

v=1

— U

= Dt DTy

U,D, +U,D,
1-U

D, + U,(D, - D,)
1-U '

= DT+

An update operation accesses first the message disk. Once, the message disk is

read, the A-value is available and the process of writing w — 1 check disks can be started.

161

1.0+
200
Write Response Time 08 Utilization
150 H
’g - 06
2
s] g
2 100 =
[1 D 04
J Read Response Time
50 -
] 0.2
0 T T 1 0.0 T T 1
0.00 0.02 0.04 0.06 0.00 0.02 0.04 0.06
Load (Requests per msec) L oad (Requests per msec)

Figure 10.1: Performance with No Write Synchronization

If we assume that response times are approximately exponentially distributed, we can use
the harmonic number H,,_; as a multiplier to calculate the response time for the last of the

w — 1 check disk accesses. We arrive at

_ DT‘I'Uw(Dw_DT)) <Dw‘|’UT(D7‘_Dw))
Rw—< 1-U ‘|’Hw—1 1-U

as the response time for a write request. The first addend estimates the response time for
the A-value to be available and the last one estimates the response time for the check writes.
The write at the message disk finishes exactly two latencies after the old information data
has been read and is always done before any check disk.

We now consider a level 4 RAID which features fixed message and check disk
assignment. Assume that C' of the N disks are check and consequentially N — C' message
disks. The load at a message disk is p,A/(N — C') reads and p,A/(N — C) writes. At a
check disk, it is (w — 1)p,A/C and consists only of writes. The utilization at a message

disk consists of read load Uy, , and write load U,, ,, and is expressed by
U = (pr Dy + puDw)N/(N = C)

and at a check disk
Uc = (w—1)pu,DyuA/C.

162

The read response time is

_ DT + Drm,w(Dw - Dr)

R,
1-Un

The write response time is

D4+ Up (D, — Dy) D,

Tt 1—U, 1-U."

We present the response times for a Level 5 RAID without write synchronization
in Figure 10. We use a write service time of 24 msec, a read service time of 12 msec and a
read to write ratio of 2:1. The load is the number of arriving request per msec. The queuing
network remains stable for loads of up to .04 requests per msec and disk, but we give results
only for loads less than 0.33, because the corresponding write response time would exceed

200 msec.

Chapter 11

Adjustment for the Presence of

Failed Components

Performance worsens considerably after component failure. We describe the effects
analytically and give examples. The effects of faults depends strongly on the type of RAID
and the existence and kind of spare space. We organize the results in a section for RAIDs
using ACATS and one using the classic, static reliability group assignment. The results for
less important types (Level 4, Complete address translation) can be derived with ease from
our calculations. Within each section we subdivide according to the sparing scheme that is
used. Finally, we treat the cases of the “write quorum” w = 2 and w > 2 and make thus
the distinction between an MDS based RAID and two dimensional RAIDs on one side and
a traditional one-dimensional RAID on the other side.

We only treat the case of a single disk and a single string failure. The more exotic
failure modes are so rare, that they have no influence on the performance and it comes as
no surprise that our more resilient RAID types can suffer failure modes that lead to bad

performance. In all cases, it is easy to adjust our treatment to these rare modes.

11.1 Strategies for RAIDs with Spare Space

The reconstruction of data originally stored on the lost message disk on the spare
disk (or spare space) determines the load and hence performance immediately after the

occurrence of a failure.

161

162

Symbol Explanation Example Value
n Number of Strings. 10 — 11
m Number of Reliability Groups. 5
w Number of Disks accessed during a Write
N Numbe of Disks nm
T Number of Tracks 2000
¢ User Request Activated Reconstruction Load.

K Portion Reconstructed or Reconfigurated. 0—1
Ay Read Load at a Disk. 10 ms
Aw Write Load at a Disk. 20 ms
At Track Read Load at a Disk. 15 ms
Atw Track Write Load at a Disk. 25 ms
T Probability of Accessing a Reconstructed Block 0—1
¢ Forced Reconstruction Load.

Pr Read Proportion of Requests 0.667
Puw Write Proportion of Requests 0.333
A RAID Load

Table 11.1: List of Symbols for Chapter 11

On one end of the spectrum we have “lazy” or rather “opportunistic” methods,
which use “read redirect” and “write piggy-backing” ([25].) On the other end we find forced
reconstruction which rebuilds data independently of demands for data on the lost disk.

In read redirect, data originally stored on the lost disk is read. It is reconstructed
with a read to enough disks in the same reliability group and the result is not only returned
in answer to the request but also written to the spare that replaces the failed disk. Write
piggy-backing writes data that would have been stored on the failed disk directly to the
spare. In order to maintain the consistency of the check information, we need to read all
or almost all the disks in the same reliability group. We can use write redirect also if a
write requests would have changed check information on the failed disk. In this case, too,
we need to access all the message disks in the reliability group.

In forced reconstruction, the RAID controller issues reads to the failed disk that
result in the reconstruction of the data on the lost disk, which is then written to the spare.
The advantage of using only forced reconstruction is administrative: The reconstructed data
blocks are contiguous, whereas read redirect and write piggy-backing reconstructs blocks
seemingly randomly. For all reconstruction schemes it is advantageous to use whole tracks

instead of blocks. The advantage of using the opportunistic methods consists of the labour

163

savings involved and the effect of temporal locality, which reconfigures the more frequently
used data first on spare space.

Every RAID needs to transform user request addresses to a block of data into
disk addresses. In the absence of faults, we only use a simple formula to accomplish the
translation. In the presence of faults at least a list of failed or inaccessible disks is required
together with their reliability group. The latter can be implemented with a simple formula.
The location data increases with the use of sparing and especially with distributed sparing.
The mode of data reconfiguration on spares is another drain on the storage needs of the
RAID. If forced reconstruction is used and the reconstruction proceeds linear, e.g. from the
highest track number to the lowest, only one track or block number needs to be stored. On
the other hand, if redirection of reads and piggy-backing of writes is used, reconstructed
addresses need to be stored to make use of this procedures. While most of the control data
is stored in the RAID non-volatile storage, during reconfiguration of a whole string as an
extreme example, some of these data needs to be written to disk and thus increases the
RAID load at a point when already the resources are strained. We exclude this kind of load
from our considerations, because the trade-offs between hardware (larger RAID controller)
and performance have to be assessed in a late stage of RAID design.

Any analysis of a scheme that uses write piggy-backing or read redirect needs to
be concerned about the temporal locality of accesses. We assume a rule Z(n) that gives
the total number of blocks accessed after m accesses total. This rule can reflect Zipf’s
distribution or the 80/20 rule which claims that 20% of the blocks are accessed 80% of the

time.

11.2 RAIDs with Almost Complete Address Translation

The RAIDs that use the almost complete address translation scheme (ACATS)
can be Level 5 RAIDs, MDS-Code based RAIDs or our two-dimensional schemes. They
can use free-standing hot spare disks, distributed sparing of one or two disks in two flavors,
naive and safe, and distributed sparing of a whole spare string. Of the many failure modes
a RAID can possibly suffer, we limit ourselves to the discussion of the effect of one failure

of a disk or a string at a time.

164

We assume that n disks form a reliability group and that normally w of them need
to be written, so that we have w — 1 checks. The number of reliability groups is m. All n

disks in a reliability group are located on the n different strings.

11.2.1 No Spares

When no spares are used, the load adjustment consists of increased read loads due
to reads to the failed disk(s), decreased write loads when check information for the written
block was kept on the failed disk(s) and increased write loads when the information data
was kept on the failed disk.

We concentrate on performance after a single disk or a single string failure has
occurred. As only the disks outside the string on which the failed disk is located experience
changed load, we derive the loads and then the utilities for them only. We count single
writes which do not read the overwritten data first as reads because they are served with

the same service time D,.

No Spares: Write quorum w — 2:
Load increases after failure stem from three kind of requests: reads to the failed disk, writes
to the failed disk, which serves as the message disk, and writes to the failed disk, when it
serves as the check disk. We service the first kind (reads to the failed disk) by reading the
n — 1 other disks in the reliability group and recovering the information that then is relayed
to the requestor. If a write addressed to the failed disk in capacity of a message disk arrives,
we need to update the check information. We have to read n — 2 disks and then perform a
simple write at the check disk. Because we need the results of the reads first, the write to
the check disk can be modeled as an additional disk access. It has the same service time as
a read and is counted as a read. If we service a write that uses the failed disk as a check
disk, we only need to do a single write at the addressed disk. We count this as a read. The
frequency of these requests are respectively p,.A/nm, p,A/nm and p,,A/nm.

Because writes involving the failed disk are treated differently, we need to calculate
this load at the disks outside the string which contained the failed disk. There are p,,A/nm
write requests directed to the failed disk in capacity of message disk and the same amount

in capacity of check disk. These correspond to the same number of requests to the (n—1)m

165

disks outside the string with the failed disk.
Summing up, we obtain for the new read and write load at the disks outside the

string which contained the failed disk:

df prA n—1 pA n—1 pyA I puA
AT = +
nm (n—1)mnm (n—1)mnm (n—1)m nm
1 n
— 1 - Aold Aold
<+m)T +(n—1)mw
N 2pu A 3 2pA
w nm nm(n—1)m
1
— 1— Aold

In the first equation, we have first the normal read load, the additional read load generated
by read requests to the failed disk, the accesses caused by writes to the failed disk as a
message disk and finally the writes that used the failed disk as a check disk. The diminished
write load can actually better performance, if the strong write synchronization is used. The

load increase is approximately 1/m the original load.

No Spares: Write Quorum w > 2:
In this section we investigate the performance for the MDS and the two-dimensional RAID.
We need to consider again the three kinds of requests that will change the load. A read to the
failed disk is handled by accessing n —w+1 disks. A write to the failed disk as message disk
still needs to access n — w disks and then write to w — 1 disks simultaneously. These writes
are synchronized, but we only need to overwrite the old check data with the new values.
The synchronization method is crucial here and we derive the loads only for the no-write-
synchronization scheme. Then we can treat the w — 1 writes as independent disk accesses,
which count as reads. Because it is not likely that there is an interfering request between the
read and the write, this approximation is slightly pessimistic. An exact solution can easily
be obtained, but suffers from an undue multiplication of request classes. A write to the
failed disk as check disk needs only to perform a usual write with only w — 1 participating
disks. As we have already restricted ourselves to the no-write-synchronization scheme, we
account for these among the write requests.

We have p,A/nm read requests to the failed disk, p,,A/nm write request to the

failed disk in its capacity as a message disk and (w — 1)p,A/nm write requests to it as a

166

check disk. The original load of write requests involving the failed disk as either message

or check disk is (w — 1)wp,A/nm(n — 1)m.

We have
N prA m—w+1p A n—w+w—1p,A
! nm (n—1)m nm (n—1)m nm
_ <1+n—w—|—1)/\$zd+iAfjd
(n—1)m mw
N wp, A w—1 wpuA w—1 (w—1)p,A

nm (n—1)m nm (n—1)m nm
w—1
— 1— Aold
(w(n — 1)m) w

In the first equation, the first addend represents the normal read load, the second reads to
the failed disk and the third writes to the failed disk in the capacity of message disk. The
second equation’s summands represent the normal workload, then writes that involve the

failed disk and the writes to blocks of which one check disk was the failed disk.

No Spares: Adjustment for String Failure
We obtain our result by analogue assumptions and reasoning. Now, the additional work is

m times as large as before. We have for w = 2 :

ol prA N (n—1Vmp, A (n—1)mpyA L™ puwl
" mam (n—1mnm (n—1)mnm (n—1)m nm
— 2Aold n Aold
N 2p0A 2mp,A
Yo mm am(n-1)m

1 0
= (1_ (n_l))Awld

and for w > 2:

sf prA (m—w4+1)mp, A (n—w+w—1)mp,A
A= +
nm (n—1)m nm (n—1)m nm
= (14— A"+ =7
(+ (n—1)) ro T w Y
. wpu,A (v —Dmwp,A | (w—1)m (w—1)p,A
v ym nm (n—1)m nm

167

No Spares: An Example

We illustrate our results in an example that shows the typical utilization adjustments. We
consider a small RAID with 5 reliability groups distributed over 10 strings. Each reliability
group has only one check disk. There are 45 message disks and 5 check disks in the RAID
for a total of 50 disks. Alternatively, we consider an MDS-based RAID with 11 strings and
5 reliability groups. The two RAIDs have the same data storage capacity. We base our
service time estimates on a latency of 5 ms and an average seek time little less than 5 ms.
This gives

D, =10 ms D,, =20 ms

We assume a read ratio of 66.67% in the RAID load mix. If the RAID load is A, measured in
requests per millisecond, the utilization of the disks is 0.4A for the one-dimensional RAID
and .485A for the MDS-RAID. After a disk failed, the utilization goes up to 0.450A for
the one-dimensional RAID and to 0.518A for the MDS-based RAID. For a string failure,
the values are 0.652A and 0.691A, respectively. These numerical results depend on the

dimensions of the RAID.

11.2.2 Reconfiguration on Check

If no spare space can be provided, we can increase performance by reassigning the
check tracks to contain message data originally stored on the lost disk. The draw-back to
this scheme is the necessity to restore the original RAID lay-out in the repair procedure.
(If we do not do this, then the replacement disk will keep all the check data and we end
up with a RAID 4 organization’s bad performance.) We call the scheme presented here
“Reconfiguration on Check” in contrast to “Reconstruction on Spare” which we discuss
below. In Section 11.2.3 we will discuss possible reconfiguration strategies at length. Here,
we just analyze a particular scheme that achieves excellent reconfiguration times. In all
cases, the RAID controller needs to keep track of the reconfiguration progress. First, we
treat the failure of one disk.

A bitmap contains the information whether the check track in a reliability group
carries reconfigured message data from the failed disk or check data. During any operation
that accesses message data on the failed disk, we expand the data reconstruction procedure

by overwriting the check track with the message track from the failed disk. By accessing

168

whole tracks instead of blocks we speed up the reconfiguration procedure considerably.
Another advantage is that spatial locality increases the hit rate of finding the data already
on the check disk. In addition, we use “forced reconfiguration” in which we reconstruct a
data track of the failed disk independently of user requests.

We denote by k the proportion of the check tracks that now carry the message data
from the failed disk. If there are T tracks, then there will be only 7' -(n —1)/n check tracks,
because one n'* of the check tracks were located on the failed disk. We can (very roughly)
estimate the hit ratio to be equal to k. Actual behavior differs somewhat for small « the hit
ratio is much higher, but with larger it will start to lag behind. The reconfiguration times
are minutes and a typical user might not even be logged on, to say nothing of accessing all
the data files in such a short time. We hence use k as the hit ratio as a convenient fiction,
that does not falsify our conclusions, as long as we do not suffer the illusion, that forced
reconfiguration will not eventually become necessary if we want to replace all check tracks
by message tracks.

We call ¢ the forced reconfiguration load and (the user request activated recon-

figuration load.

Reconfiguration on Check: Write quorum w = 2:
The user request activated reconfiguration load is

1
C=(1=R) (4528

because only reads and writes to the failed disk in its capacity of message disk will generate
a reconfiguration of data on check.

The only disks that have a track in the same reliability group as a track on the
failed disk are the disks outside the string on which the failed disk was located. The
utilization at these disks will be worse and we concentrate our analysis on them.

Because we are reconfiguring all reliability groups that have lost a track on the
failed disk, writes in these groups are now a simple overwriting of the old message data. We
treat these reads in our analysis as reads, because they proceed with the same service time.

On average, a disk will serve the afflicted reliability group 1/m times. Hence, the normal

169

service loads are

-1 pA 1 A
Reads: L _
m nm m nm
-1 2p,A
Writes: mn 2P
m nm

We need to add to this the load originally directed to the failed disk, which will be spread

over the (n — 1)m disks not in the same string as the failed disk. We obtain:

m—1 p,A 1 A K A
Reads: _ _——t —
m nm m nm (n—1)mnm
1 2puA
Writes: m-_ .2
m nm

The final adjustment introduces two new classes of requests: The first is the track read,
whose service time Dy is the arithmetic average between a read and a write request, because
it contains two disk latencies as opposed to one for the read and three for the write operation.
we denote the load by A;. The second class are the track writes with service time Dy,, which
contains 4 latencies. During a reconfiguration operation, we first read all the message disks

available and then read and rewrite the check track. We then obtain for the final count:

_ yoid , (n—1+4K)A
A=A +(n—1)mnm
A, = Dl

m
L (=240
b (n—1)m

RS

YT e m
A
¢ = (I=kK)—

We will see a slight utilization increase right after the failure and then see the utilization
reaching a lower level (as the hit probability 7 — 1) because 1/m of the writes no longer
require updates of check data. This saving is slightly offset by the additional load resulting

from the concentration of all message data on the surviving disks in the reliability group.

170

1.0 30
Portion Reconstructed
0.8 4
20 4] Reconstruction Load

06]
0.4 4

Utilization 10
0.2 4
o+t 04—

0 50 100 150 200 250 0 50 100 150 200 250
time (sec) time (sec)

Figure 11.1: Reconfiguration effects on the Utilization of the Disks outside the String with
the Failed Disk for Reconfiguration on Check at a one-dimensional RAID. We use oppor-

tunistic reconstruction only.

Reconfiguration on Check: Example (continued)

In our example, we will see the utilization increase to .42444A or by 6.11% of the baseline
utilization of .4A immediately after the disk failure, when x = 0. Then slowly the utilization
will fall to 0.36444A or by 8.88% of the baseline utilization. The latter number consists of
10.00% savings due to writes that do not need to update check information as well and an
additional utilization of 1.11% in order to replace the failed disk. The utilization of the
disks on the same string stays constant at the baseline level of 0.400A.

We present the utilization during the reconfiguration process at the disks outside
the string with the failed disk in Figures 11.1 and 11.2. (Because the actual behavior
depends on locality of data accesses, the times in Figure 11.1 and in all Figures presenting
are not a good predictor of actual behavior, but the utilization behavior over time is an

excellent predictor.

Reconfiguration on Check: Write Quorum w > 2:
Most RAID schemes built are one-dimensional RAIDs with one string of spares at the most.

An MDS RAID has already committed the same resources and further addition of spare

171

1.0 4 150 —
Reconstruction Load
Utilization
0.8
100 —
0.6 -
0.4
50 —

Portion Reconstructed
0.2
0.0 T T 0 T T

0 5 10 0 5 10

time (sec time (sec
1.0 4 (se0) 100 — (sec)
0.8 80 Reconstruction Load

Utilization
0.6 60 —
0.4 40 -
0.2+ 20 -
Reconstruction Load
0.0+~ — T ———— 0 —— : —
0 5 10 15 20 0 5 10 15 20
time (sec) time (sec)

Figure 11.2: Reconfiguration effects on the Utilization of the Disks outside the String with

the Failed Disk for Reconfiguration on Check at a one-dimensional RAID. The utilization

of the disks outside the string with the failed disk is kept at 80% (top) and 60%(bottom).

172

disks or strings is not necessary advantageous. Reconfiguration of an MDS based RAID
is then a very attractive way of using the (by comparison) generous redundancy that the
MDS RAID provides. This appraisal is reinforced by the design philosophy of the MDS
RAID which tries to avoid the effects of multiple, simultaneous component failures, which
becomes impossible after failure.

A reliability group in an MDS RAID contains at least two virtual check disks.
Only one of them is being overwritten with reconstructed information data. If some track
on the failed disk contains check data from the other virtual disk, we do not transfer these,
but then the RAID controller is slightly more complex.

To analyze the performance in complete generality, we would have to introduce a
class of writes, which involves only w — 1 in lieu of w disks. If we do not use strong write
synchronization, (which we have shown to have a very adverse effect on performance,) we
do not need this distinction. Therefore, we assume that strong synchronization is not used.

The read load consists of the old read load plus 7 times the read load at the
failed disk distributed over (n — 1)m disks. The write load changes because in the afflicted
reliability groups the writes now include only w — 1 disks and because the lighter writes to
the failed disk are not part of the load at the disks outside the string with the failed disk.
If a read tries to access data on the failed disk, this request leads to a data reconstruction
(n —w track reads and 1 track read 4+ write.) The same happens, if we try to write message
data to the failed disk, before the track has been reconfigured on check space.

We obtain for the loads at the disks outside the string with the failed disk:

o prA 4 T prAA
nm (n—1)mnm
T
m—1wpu,A 1 (w—1)py,A T (w—1)puA
Au) = + — +
m nm m nm (n—1)m nm
(n —w)
Ap = —
1
My = ———
wh pA
¢ = (1—7r)<'0——|—'0)
nm nm

At the beginning of the reconfiguration process, the utilization will exceed the

173

1.0 1.0
Portion Reconstructed] Portion Reconstructed
0.8 0.8
0.6 - 0.6 -
Utilization Utilization
0.4+ 0.4+
0.2 0.2
oo ++—-—"——7r"-+r———7———r—r—r 00 f——7—F—1 17—
0 50 100 150 200 250 0 50 100 150 200 250
time (sec) time (sec)

Figure 11.3: Reconfiguration effects on the Utilization of the Disks outside the String with
the Failed Disk for Reconfiguration on Check at a MDS based RAID. We use only oppor-

tunistic reconstruction.

utilization if we do not reconfigure, but then the utilization will decrease to a level lower
than baseline. Only the disks outside the string with the failed disk profit from this savings,

so that the performance gain is partially not realized.

Reconfiguration on Check: Example (continued)

We continue our example for the MDS RAID. If we use opportunistic reconstruction only,
the initial utilization increases from 0.485A to 0.513A as compared to 0.518A without re-
configuration and finally settles at 0.470A. The latter figure reflects the lower write load,
because one reliability group performs updates with writes to one disk less. This savings
exceeds the load increase resulting from the distribution of the load of the failed disks over
all strings but the one with the failed disk. We give numerical examples in Figures 11.3 to

11.4.

Reconfiguration on Check: String Failure
We now adjust our analysis to treatment of reconfiguration in the string failure case. The

modifications to the original load now have to be multiplied essentially by a factor of m.

174

1.0+
Portion Reconstructed
Utilization

08 100
0.6 -
0.4 - 50

Portion Reconstructed
0.2 -
0.0 , : : .0 | : |

0 5 10 15 0 5 10 15

time (sec time (sec
1.0 - (se0) 50 (sec)
0.8 4 40 Reconstruction Load

Utilization
0.6 30
0.4+ 20
Reconstruction Load
0.2+ 10
0.0 e e i 03 A e e
0 10 20 30 0 10 20 30
time (sec) time (sec)

Figure 11.4: Reconfiguration effects on the Utilization of the Disks outside the String with

the Failed Disk for Reconfiguration on Check at a MDS based RAID. The reconfiguration

proceeds at constant disk utilization of 80% (top) and 60% (bottom) in all strings but the

one with the failed disk.

175

Reconfiguration on Check: Write Quorum w = 2

With the same notation as in the disk failure case treated above we have

)\if - i-l— T i
nm n-—1nm
A= 0

g (=264 0)
g (n-1)

AtuJ - (TL—l)
A
¢ = (I-m)—

At the beginning of the reconfiguration process, the utilization increases, but not as much
as without reconfiguration. We are reaping here the benefit of avoiding check disks update.
After reconfiguration we are left with a disk array without redundancy. The utilization is

a rather reduced to

A

wref D
. (n—1)m "

This makes reconfiguration a most attractive scheme. At the end of the repair, the RAID
needs to reconstruct the lost check data, which can be done at a relatively low disk utilization

and hence without serious performance loss.

Reconfiguration on Check: Example (continued)
In our example, the utilization at the beginning of the reconfiguration process is 0.522A.
After the reconfiguration the utilization is reduced to 0.222A. We give examples of the

reconfiguration process in Figures 11.5 and 11.6.

Reconfiguration on Check: Write Quorum w > 2
After the string failure, all writes will proceed with one less write to disk. With this in
mind, we can give the write load exactly even for a use of the strong write synchronization

scheme. The loads are

s

Asf — Aold
T T (TL— 1)

old
/\r

/\fﬂf _ (w—1)A N T (w-1)A
nm (n—1) nm
_9

M= =(C+9)

n—1

176

1.0+ 50

0.8 40

Portion Reconstructed

0.6 30

0.4+ 20

0.2+ 10

Utilization Reconstruction Load

w771 O
0 50 100 150 200 250 0 50 100 150 200 250

time (sec) time (sec)

Figure 11.5: Reconfiguration Effects on the Utilization of the Disks after a String Failure

in the One-Dimensional RAID Organization. We use only opportunistic reconstruction.

s 1
X = m(f-l—qﬁ)

The utilization at the beginning of the reconfiguration process is slightly higher
than without reconfiguration, but at the end stabilizes at the utilization of a RAID with
one less check disk, which is always lower. Again, reconfiguration turns out to be a very
attractive way to handle component failure. The only disadvantage is a slightly more
complicated and hence insignificantly longer repair time. We can use almost arbitrarily

small utilization increases to restore the original RAID configuration at the end of a repair.

Reconfiguration on Check: Example (continued)
Returning to our example, we present the result of our simulations for the MDS RAID in

Figures 11.7 and 11.8. As before, they show reconfiguration to be very attractive.

11.2.3 Use of a Spare Disk

In this section we assume the use of a spare disk. We calculate the load when a

proportion k of the failed disk is already reconstructed. We first treat the case of a failed

177

1.0

0.8

Utilization

0.6

0.4+

0.2+

0.0

Portion Reconstructed

0

1.0

0.8

0.6

10 20 30 40
time (sec)

Utilization

0.4+

0.2+

Portion Reconstructed

0.0

" T " T " T '
20 40 60

time (sec)

= Reconstruction Load
1 LI B B B B B | LI B B B B B | TTr T T T TTT | LI B B B B B | T T T 11
0 10 20 30 40

time (sec)
E Reconstruction Load
1 T | T | T | 1
0 20 40 60

time (sec)

Figure 11.6: Reconfiguration Effects on the Utilization of the Disks after a String Failure

in the One-Dimensional RAID Organization. We use constant disk utilization at 80% (top)
and 60% (bottom).)

178

1.0+ 50

Portion Reconstructed

0.8 40

0.6 - 30
Utilization
0.4 20
0.2 10
Reconstruction Load
Lo e L e e e e e L L S L
0 50 100 150 200 250 0 50 100 150 200 250
time (sec) time (sec)

Figure 11.7: Reconfiguration effects on the Utilization of the Disks outside the String with
the Failed Disk for Reconfiguration on Check in a MDS-based RAID. We use only oppor-

tunistic reconstruction. (The reconstruction load is given in requests per sec/100.)

disk. (A similar analysis is given in [25]. In contrast to loc. cit., we reconstruct full tracks
and we also assume that utilization is relatively low and should never reach 1.)

If we use forced reconstruction at a rate of { requests per time unit, an additional
read load of A,y = (/(n — 1)m will apply. This load will be serviced with a different service
time because we read a whole track. This is almost the service time of an unsynchronized
write.

We now include read redirect and write piggy-backing in our performance eval-
uation. To decrease the reconfiguration time S of the stand-by disk, we assume that the
whole track is reconfigured with an attempted access to a block on the failed disk.

We had decreed the existence of a rule Z(N) that gives the number of tracks
accessed in N accesses. Given the load A at the RAID, we can determine the load { of
opportunistic reconstruction.

The failed disk stored many more message than check data. The check data and
the message data are, however, rewritten equally often. Opportunistic reconstruction of

check data protects the last written and presumably most important data and is therefore

179

1.0

0.8

Utilization

0.6

0.4+

0.2+

0.0

Portion Reconstructed

1.0

0.8

0.6

0.4+

0.2+

0.0

T T T T T
20 40 60

time (sec)

Utilization

Portion Reconstructed

T]
50 100

time (sec)

40

30 Reconstruction Load

0+ " T " T " T
0 20 40 60
time (sec)

40

30

20 .
Reconstruction Load

o711
0 50 100

time (sec)

Figure 11.8: Reconfiguration effects on the Utilization of the Disks outside the String with
the Failed Disk for Reconfiguration on Check in an MDS RAID. We fix disk utilization at
80% (top) and at 60%.

180

advantageous. The probability 7(¢) that a track accessed on the failed disk is already
reconstructed on the spare, is independent of the character of the write (i.e. whether the
failed disk is message or character disk) and presumably independent of the character of
the request (read or write.) A pessimistic model assumes that no temporal locality is seen

and obtains

We have
K(t) = JO/T+ [(1= 1)/ D)) Tdr.

We could calculate the reconfiguration time S from this integral equation.

Our analysis applies strictly only to RAIDs that do not use the strong write syn-
chronization scheme, but it can be easily transferred to this scheme. We choose a strategy
that reconstructs whole tracks on the spare at once. This strategy wins out over individual
block construction, unless the utilization of the RAID is close to one and only opportunistic
reconstruction can be performed. We introduce a new kind of request for which a whole
track is being read. We indicate this in our formulae by the suffix ¢, for example, the load

of this request at an individual disk is called A;.

Use of a Spare Disk: Write Quorum w = 2

We initially consider a write quorum of two. To handle a read to the failed disk, we just
read the track at the n — 1 disks in the same reliability group, store the data temporarily
until all are available and then reply the user request and write the whole track to the spare.
If a write requests arrives that was addressed to the failed disk as a check disk, we again
read n — 1 tracks in the same reliability group, and reconstruct the check data on the spare
disk. In this procedure, we replace the overwritten block with the new data. We execute
a write directed to a block originally stored on the failed disk by first reading the track at
all message disks in the reliability group. With the written block we can now calculate the
corresponding check block. We now access the check track, reading the information at all
but the new check block which is written instead. With the information gathered, we can
now write all the blocks of the track on the spare. Consequentially, all operations directed
to the failed disk cause n — 1 track reads, potentially interspersed with a single block write.

The disks outside the string with the failed disk will experience a load shift from

181

write operations to reading tracks due to writes involving the failed disk. The loss of write
load is (1—7(t))-A%4-1/(n—1)m where 7 is the probability that a write can be satisfied by
the spare. The exact value of 7 depends on the effects of temporal locality, but is probably
much smaller than (t), the portion of the spare that has already been reconstructed. We
can obtain an approximation of the disk load by assuming that a write to the failed disk
causes n — 2 track reads and does not change the write load. The proportion of these
requests is 2p.,/(pr + 2pw)-
We obtain for the loads:

Adf — Aold
A = yeld _ 1 —7(1) \old
N d+¢

¢ m

¢ = (1—r()A

and for the approximate loads (denoted with a superfix a):

Aadf — Aold

Aadf — Aold

Nedf 2pw(n —2) 4+ pr(n —1)) o+ (¢
t =

n—1 (n—1)m

The load at the spare consists of the reconstruction load and write and read redi-

rects:
A, = w(t)add
Aw = w(H)A?
A= 9+ (C
¢ = (1=rN

The loads are multiplied with the service times and the sums added up to obtain
the utilizations. If we do not use a scheme where the service times depend on the utilization,

this becomes a good measure for the performance of the RAID.

182

The increase of utilization at a disk outside the string with the failed disk is
approximately the reconstruction load divided by the number of reliability groups times
the average service time, i.e. (¢ + ()D;/m, because the average service time for a typical
load with a read to write ratio of 2:1 is exactly the arithmetic average, which turns out to
be the service time for a track read. (The typical write has 3 latencies, the typical read
1 and the track read 2.) The opportunistic load is initially the load the failed disk would
experience, i.e. A\. We can estimate the utilization before the failure at ' = AD; and after
the failure at least at u¥ = AD; + AD;/m, that is, an increase of 1/m. As more tracks of
the failed disk are reconstructed on the spare, the utilization slowly goes back to normal.
Utilizations in a RAID rarely exceed 0.3 and this poses no problem. The opportunistic load
at the spare is the same as before, but of different character. For a read to write ratio of 2:1
the utilization is not changed. If we introduce forced reconstruction into the picture and
for example keep the reconstruction effort constant, the utilization at the disks outside the
string with the failed disk will stay at the initial increased level. As the spare fills up with
more and more reconstructed tracks, the utilization steadily increases and reaches twice the
former level. We can use a different scheme and set the reconstruction workload at a level
that keeps the utilization at the spare constant. Then the utilization at the other affected
disks increases by approximately 1/m the utilization of the spare disk, but slowly decreases
while the spare becomes fuller and the reconstruction load is adjusted to allow the spare
to serve normal workload requests. The benefits of this procedure do not depend on the
exact read to write load ratio. If the temporal locality is high, the spare will receive a
higher proportion of requests to the reconstructed tracks and the reconstruction time will
be prolonged. If the temporal locality is low or is negative so that recently used tracks are
less likely to be accessed, the reconstruction load is higher and the reconstruction time is
shortened. (A very similar scheme is presented in [25].)

We calculate the reconstruction time under this policy for a temporal locality of
zero, when every track is accessed with the same likelihood independent of past behavior.

For our specific read to write requests ratio we derive
Ue = KUy + ft/)Dt

as an expression for the constant target utilization u. of the spare. stands for the portion of

reconstructed tracks on the spare, u, denotes the old utilization, % is the total reconstruction

183

load (¢ = ¢ +) and D; was the symbol for the track read service time. As

K= %/Otlb(r)dr

we obtain the integral equation:

t
e = 22 [p(r)dr + Dy
T Jo

Differentiation yields
u
0=—=v¢+ D’
T U+ Dy

which is solved by the function family

Then

=5 (- (57))

and by substituting we determine C' = u./T :

We obtain the reconstruction time ¢,. by solving for s(¢,.) = 1:

TD o
tre = — tln(l—u—>.

) Ue

In contrast, the reconstruction proceeds with opportunistic reconstruction only at the rate

of

— Uyt
Kopp = 1 — exp DT

Use of a Spare Disk: Example (continued)

We continue our example from the preceding section. The track access time is set at 15 ms
consisting of a seek of little less than 5 ms, a short time to the beginning of a block and two
latencies. We present an example with only opportunistic reconstruction in Figure 11.9.
We assume no temporal locality at all. The graph shows the capacity slowly increasing to

1. The next curve is the utilization of a disk outside the string with the failed disk, which

184

1.0

Portion Reconstructed

0.8 40

0.6 - 30
Utilization
0.4 — 20
Utilization at Spare
0.2 10
Reconstruction Load
0.0 v e e N 0 s ——————— T
0 100 200 300 0 100 200 300

time (sec) time (sec)

Figure 11.9: Disk Utilization with Opportunistic Load: Shown are protion of reconstruction
data on spare, utilization of a disk outside the string with the failed disk, utilization of the

spare disk (left) and reconstruction load (right).

decreases from 0.474 to 0.400. The utilization of the spare is constant 0.4. The reconstruction
load ¢ starts at 0.027 and decreases slowly to zero.

In Figure 11.10 we show a mix of forced and opportunistic reconstruction, that
keeps the reconstruction work-load constant. The utilization at the disks outside the string
with the failed disk increases slightly due to normal writes involving the the spare. The
utilization of the spare doubles, as its additional load is increased by the normal disk load.

Figure 11.11 illustrates the effects of fixing the utilization at the spare at 0.8. In
our case, reconstruction is sped up and the utilization at the disks outside the string with

the failed disk is increased, though not by the same factor.

Use of a Spare Disk: Write Quorum w > 2

All data stored in a reliability group can be accessed through a read at a read quorum
of n — w+ 1 disks. We first discuss the handling of requests directed to the failed disks.
A read to the failed disk results in a track read at n — w + 1 disks and a reconstruction

of the track on the spare. If the track is already reconstructed on the spare, we only read

185

1.0 5
0.8
0.6 4 Utilization at Spare
Utilization

0.4
0.2

Portion Reconstructed
0.0 T T T

0 20 40 60
time (sec)

40

Reconstruction Load

20

T T T T T
20 40 60

time (sec)

Figure 11.10: Utilization with Constant Reconstruction Load when Reconstructing on Spare

in a One-Dimensional Disk Array: Shown are portion of reconstructed data on spare, uti-

lization at a disk outside the string with the failed disk, utilization of the spare disk (left),

and reconstruction load (right).

186

1.0+ 60 —

Utilization at Spare
0.8

40 Reconstruction Load

0.6 - Utilization

0.4+
20

0.2 - Portion Reconstructed

0 10 20 30 40 50 0 10 20 30 40 50

time (sec) time (sec)
Figure 11.11: Utilization with Constant Spare Utilization when Reconstructing on Spare in a
One-Dimensional Disk Array. Shown are portion of reconstructed data on spare, utilization
at a disk outside the string with the failed disk, utilization of the spare disk (left), and

reconstruction load (right).

187

it there, of course. We perform a write to the failed disk as the information disk by first
reading all existing n — w message tracks. With the data from the write request, we now
have enough information to calculate the new check data. We then read the w — 1 check
tracks, but intersperse the read by a write to the check blocks of the updated block, and
finally we write the reconstructed track of the failed disk on the spare. Now assume that
the write used the failed disk as a check disk. We can save track reads in this case. We
write normally to the message disk. This gives us the A-value so that we can update the
surviving w —2 check disks. At the same time, we can read the whole track. Simultaneously,
we read the track at all but w — 3 message disks. We also write the new check blocks in a
normal write operation at the w — 2 remaining check tracks, but reading the whole track.
Finally, we now have enough information to reconstruct the track on the spare. We perform
w — 1 write operations (while reading the whole track at the same time) and n — 2w + 2
full track reads. Alternatively, we can perform n — 1 track read/writes. As the difference
in service time between a write and a track read operation is only a single latency, we gain.
All forced reconstruction work proceeds with n — w + 1 track reads.

The pre-failure write load at the disks outside the string with the failed disk will
diminish by those writes involving the failed disk as message disk, as far as the spare has
not already taken over. This gain is fictitious: the response to these requests leads to a
track reconstruction process which uses more resources. The write load to the failed disk is

(1= r(OAG! = L
Pr+ WPy

and each requests involves w — 1 disks spread over (n — 1)m disks. The write load to the

failed disk as message disk is prﬁfupwf and the loss of writes is (n“i_lim pr_f;“)pw (. The new
loads are:
Adf — Aold
A = yold _ Pw (w—1)
Y Y pr+ wpy (n—1)m
/\df B n—w—l—l(b_l_ Pr 'n—w—}—lc
T (n—1)m pr+wpy, (n—1)m
Puw 1 (w—1)py n—2w+2

T R G .
Pr+ WPy mC pr+wpy (n—1)m ‘

188

portion reconstructed
1.0 1
utilization
05
utilization spare
reconstruction load
00
0 50 100 150

time (sec)

Figure 11.12: Utilization with Opportunistic Load at an MDS based RAID: Shown are
Portion of reconstructed data on spare, utilization at a disk outside the string with the

failed disk, utilization of the spare disk, and reconstruction load in requests per sec/100.

The load at the spare consists of the reconstruction load and write and read redi-

Tects:

A = w(H)A2?

Aw = w(t)A2d
A= 9+ (C

¢ = (1=m()r

With opportunistic load only, the utilization at strings outside the failed string
will increase somewhat more than without reconstruction on spare. The utilization at the
spare is about the same as for all disks in the RAID before the disk failure occurs. (This
observation is exactly true only for a specific read to write request ratio but quite a good
estimate for reasonable ratios.)

Disk utilization in RAIDs is never very high, so that we can assume that the peak

load at the strings without the failed disk is still less than the maximum utilization, at which

189

we would want to run a disk. We can therefore use the same strategy as before and have the
reconstruction load fix the utilization of the spare at this highest reasonable level. In our
example below, we choose a utilization of 80% as the maximum. We implement the scheme
by measuring the utilization at all disks and depending on the sustained peak utilization
issue more or less forced reconstruction orders. This scheme presents the best reconstruction

times possible without compromising response times too much. It is self-adjusting as well.

Use of a Spare Disk: Example (continued):

We continue our previous example for an MDS based RAID with 5 reliability groups and
11 strings. We use the same RAID load, so that the baseline utilization of the disks is about
12% higher than in the one-dimensional RAID.

In Figure 11.12 we show the equivalent situation to the one described in Figure
11.9. While the utilization increase at disks outside the string with the failed disk is con-
siderable (> 20%) it slowly returns to the baseline utilization, as the spare is reconfigured.
Eventually, we have to use forced reconstruction to finish the task. The amount of recon-
struction is very dependent on the temporal locality behavior, and a higher locality than
in our memory-less sample situation will lead to higher initial reconstruction and higher
spare load. Real disk access behavior will also see large areas of the disk not touched for a
lengthy period.

Our second Figure (11.13) shows the utilization of disks if the reconstruction load
is kept constant. Initially, the utilization at the disks outside the string with the failed disk
is higher, but soon the spare utilization surpasses is to double as the reconstruction process
terminates.

The third Figure (11.14) depicts the effects of the scheme that keeps the peak
utilization, in this case at the spare only, at 80% utilization. This affords us the fastest

reconstruction time.

Use of Spare Disk: String Failure:
In the case of a string failure, the spare disks cannot reconstruct the contents of the string.
We do not explore the performance as it will not be different from the one in a RAID

without any spares at all.

190

1.0 5
0.8
] Utilization at Spare
0.6 -
1 Utilization
0.4
0.2
J Portion Reconstructed
0.0 . T . : . T
0 20 40 60
time (sec)

50 5
40 _f Reconstruction Load
30
20
10
0 , : , : : .
0 20 40 60
time (sec)

Figure 11.13: Utilization with Constant Reconstruction Load at an MDS based RAID while

Reconstructing on Spare.

1.0

0.8

Utilization at Spare

10

Portion Reconstructed

20

30
time (sec)

Utilization

40 50

60 —

204

Reconstruction Load

T T T T T 1
20 40 60

time (sec)

Figure 11.14: Utilization with Constant Spare Utilization at an MDS based RAID. Recon-

struction load is given in requests per millisecond.

191

1.0+ 50

0.8 Portion Reconstructed 40

0.6 1 30

0.4 Utilization 20

0.2 - 10
Reconstruction Load

L e Ly I W O T T 1
0 50 100 150 200 0 50 100 150 200

time (sec) time (sec)

Figure 11.15: Utilization with Opportunistic Reconstruction only in the NDS Scheme.

11.2.4 Naive Distributed Sparing

In distributed sparing, one or two disks worth of free space are distributed over
all the disks in the RAID. The naive approach transfers the contents of a failed disk onto
spare space at reconfiguration. In contrast, safe distributed sparing treats these writes as
RAID writes and updates check information. Naive Distributed Sparing does not protect
well against the effects of string failure. It makes excellent use of the spare space, when it
is not in use to replace failed disk(s), by spreading the baseline load out over more disks
than a scheme with a string of spares. As we will see, this behavior remains true for the
performance with aggressive reconstruction of data on a just failed disk.

The analytical treatment of Naive Distributed Sparing (NDS) is easy. We divide
the utilization and the loads at the spare disk among all surviving disks. Distributive
sparing sets certain tracks apart as spare space. In NDS, this diminishes the number of
tracks in some reliability group. If the equivalent of s disks (typically s = 1 or s = 2) are
used for sparing then the average reliability group has ﬂn—_lmmw tracks. The treatment

of string failure is superfluous, as we do not have a whole spare string.

192

NDS: Write Quorum w = 2

For a write quorum of two, a reconstruction operation accesses

_ s(n—=2)+(m—-s)(n—1)

m

disks besides the one written. We have:

A — pold (1) \old

nm—1"
N el 1— m(t) \old m(t) \old
v Yoo n=1m Y am-1"
¢+ ¢
PV S -
! (n—l)m((b—l_c)—l_nm—l

¢ = (1—m(t)r

The load at the disks in the same string as the failed disk now increases insignifi-

cantly to

Al _ A?ld 1+ ﬂ'(t) Aold

” nm—1"
Moo= ok m(t) Aold
nm — 1
I
nm— 1

¢ = (L—m(t)A"

Distributed Sparing makes comparison to other RAID schemes difficult, because
the RAID storage capacity is different. We assume here, that the disk utilization without
failure is left the same. With opportunistic reconstruction only, the peak utilization in-
creases by 20.115% to about 0.48046A compared to a 12.593% increase to 0.450370A when
no spares are being used. The difference between the utilizations in both cases can be use
to adjust to very high baseline utilizations, when disallowing reconstruction permits us to
run the RAID in stable state.

The best reconstruction times given a maximal allowable utilization (which im-
mediately translates into response times) sets the disk utilization constant, until the recon-

struction process is terminated and the utilizations go back to normal.

193

NDS: Example (continued)
We continue the running example: In Figure 11.15 we show the utilization effects of NDS
using only opportunistic reconstruction. Figures 11.16 show the reconstruction process, if

the utilization at the disks outside the string with the failed disks is kept constant.

NDS: Write Quorum w > 2

We can modify the load formulae for the RAID with spares in this case as well. The average

s(n=2)+(m—s)(

— 2=1) tracks. The other source of changes is

reliability group consists of o =

the distribution of the spare load on all remaining disks in the RAID.

A — pold (1) \old

nm—1"
M= old ___Pw (w—-1) 4 m(t) Aold
pr +wpy (n—1)m> nm-—1
+2—-w Pr o+2—w
= 2 :
t (n—l)mqb—l_pr—l—wpw (n—l)mc
" w—1)p, o—2w+3
P ' o C+(w)pw 0 = 2w ¢
prtwpy (n—1m” pr+wp, (n—1)m
|¢-|-C
nm — 1

Because the reconstruction load is distributed over many disks, NDS offers the
shortest possible reconstruction times. On the other hand, even requests not directed to

the failed disk will suffer noticeable degeneration in the response times.

NDS: Example (continued):
We present in Figures 11.17 and 11.18 the reconstruction process for our example MDS

array.

11.2.5 Safe Distributed Sparing

Safe Distributed Sparing (SDS) safeguards the spare space by treating the re-
construction process as RAID writes. As we have seen, SDS can improve the reliability
considerably.

In the SDS as in the NDS scheme, the equivalent space of s (typically one or two)

disks is set apart as spare tracks. These tracks are uniformly distributed through the whole

194

1.0+ 150 —
| Portion Reconstructed
| Utilization 1
0.8 |
] 100
0.6 - |
0.4 1
. 50_
] Portion Reconstructed
0.2+ g
w4H—————F—————7————7——— o717
0 5 10 15 0 5 10 15
time (sec time (sec)
1.0 4 (sec) 150 — (sec)
Portion Reconstructed
0.8 |
1 Utilization 100 —
0.6 |
] 1 Reconstruction Load
0.4 1 -
50 4
0.2+ g
0.0 ¥+ 0 +—rrr—r—rrr
0 10 20 30 0 10 20 30
time (sec) time (sec)

Figure 11.16: Effects of Constant Utilization in the NDS Scheme.

195

1.0+

0.8 Portion Reconstructed

0.6

0.4 - Utilization

0.2

0.0 f———1— — e
0 50 100 150 200

time (sec)

50

30

20

10

Reconstruction Load

0 50

T T ™
100 150 200

time (sec)

Figure 11.17: Opportunistic Reconstruction in the NDS Scheme for an MDS based RAID.

1.0+
0.8 1
Utilization

0.6

0.4 -

0.2 -

Portion Reconstructed
0.0 _mmmmm
0 10 20 30 40 50
Time (sec)

Figure 11.18:

Constant Peak Utilization

60 —

204

Reconstruction Load

\

0

0 10

R B L L L B R R B R |
20 30 40 50

Time (sec)

in the NDS Scheme for an MDS based

RAID.(Reconstruction Load is given in requests per 10 ms.)

196

RAID. If after a disk failure and subsequent reconstruction on the spare space, a string fails,
which did not contain the failed disk, the NDS scheme (with w = 2) will suffer data-loss,
because a spare track (now containing reconstructed data) and another track in the same
reliability group, both located on the failed string, are lost at the same time. This is not
possible in SDS, as the spare track is treated like a track in another reliability group, which
then can be reconstructed. (Of course, a RAID which needs multiple reconstruction steps
might not be able to handle all user requests.)

The drawback to the reliability gain is the additional reconstruction work. It is
possible to limit this by using a two-step procedure, in which the reconstruction takes place
as in the NDS scheme and only after this step is finished, (as we have seen possibly in a
mere 30 seconds) is followed by an update of the checks of those reliability groups, that
host a now used spare as a “guest”. In contrast, we analyze a one step procedure.

In Table 3.14 we had given an example of distributed sparing before and after
disk failure. As can be seen from this small example, we need to perform an additional
write to a check track, if the spare space is in a different reliability group than the track
under reconstruction. In contrast, if the failed disk is in the same reliability group than
the spare track for this particular track, then the check information need not be changed.
With probability p = 1 — 1/m we have to change a check track. The procedure is very close
to that of a normal update. We need to read the old track data on the spare (which we
cannot assume to be zero) and read and write the check track. We can shift work from the
reconstruction period immediately after the disk failure to the repair process: The check
data never depends on the data on the spare track. They are assumed to be zero. When
this spare track is starting to get used, during the reconstruction period, the A-values
of the reconstruction data are the reconstruction data themselves and are embedded into
the new check data. During the repair phase, when the spare track data are placed on
the replacement disk for the failed disk, we change the check track value back, so that it
does not incorporate the spare track data. We then assume that the spare track is zero
again. By modifying the size of the reliability group, we have shifted utilization from the
reconstruction phase to the repair phase, when the utilization increase can be kept as small
as desired. The only disadvantage of this scheme is the need for the RAID controller to

distinguish between reliability groups of different size.

197

To determine the loads and hence the utilization of the disks outside the string
with the failed disk, we just add the additional track reads followed by a track writes to the
formulae for NDS. We denote the new category of loads by As,. The service time consists
of 2 latencies more than for the track read. In our running example, the service time Dy,

for the track writes is 25 ms.

SDS: Write Quorum w — 2

For a write quorum of two we have:

A — pold (1) yold

nm—1"
A yeld _ 1 —7(1) yold (t) \old
v Y n=1m " mam-1"
1
DY
t (n_l)m(¢+4‘)+nm_1(¢+6)
1 m—1
AT = —

¢ = (1—r(Hn

Using opportunistic reconstruction, the utilization at the disks outside the string
with the failed disk increases to 0.491344A (a 22.84% increase over the baseline utilization,)
which is only insignificantly larger than in the NDS scheme. Consequentially, the recon-
struction times using the constant utilization scheme are only insignificantly larger than the
corresponding times for NDS. This observation imply that SDS combines good reliability
with good performance in the normal case as well as while reconstructing a failed disk on
spare space. In our opinion, it supplements hardening strings in achieving a very attractive
RAID organization. We give details of the reconstruction process in Figures 11.19 and

11.20.

SDS: Write Quorum w > 2

In case that the write quorum exceeds two, we have:

A — yold (1) yold
T T nm_l T

198

1.0 4 50
0.8
Portion Reconstructed
0.6 30
044 Utilization 20
0.2 - 10
Reconstruction Load

0.0 1= L S S e o e [s L S S S

0 50 100 150 200 250 0 50 100 150 200 250

time (sec) time (sec)

Figure 11.19: Opportunistic Reconstruction in the SDS Scheme for an one dimensional

RAID.

A yeld _ _ Pw (w—-1) 7(%) y\old
P) e
Moo RIS, b otiu
o f:upw (n —Ul)mC f (pw J_r '110)55 - (J;(f I)ilw)g ! n;(t—) AR
e B (MY

The peak utilization under SDS using opportunistic reconstruction reaches 0.566195A.

We present the case in Figure 11.21.

11.2.6 Distributed Sparing of a String

Distributed sparing of a whole string is a performance boosting scheme due to

Menon and Mattson ([22]. In it, a string’s worth of spare space is equally distributed

throughout the disk array. Consequentially, disk utilization is diminished, because the load

is spread over more disks. To be more precise, the utilization of a RAID with n reliability

groups in the absence of failures is diminished by a factor of 1/n and consequentially, the

response time, by a factor of 7(1_%)%

199

1.0+
| Utilization
0.8
0.6 -
0.4 —
] Portion Reconstructed
0.2
00 f+——7—+——""—TF+——T7——
0 5 10 15 20
time (sec
10- (sec)
0.8 1
| Utilization
0.6
0.4 —
0.2 4 Portion Reconstructed
0.0 e e
0 10 20 30 40
time (sec)

150
J Reconstruction Load
100
50 4
Oo————— 77T
0 5 10 15 20
time (sec)
100
80
60 - Reconstruction Load
-_—
40
204
0 10 20 30 40
time (sec)

Figure 11.20: Constant Peak Utilization in the SDS Scheme for an one dimensional RAID.

(Reconstruction Load is given in requests per 10 ms.)

200

1.0

08+ Portion Reconstructed

0.6+

0.4 - Utilization

0.2

L e N L S S
0 50 100 150 200

time (sec
0 (sec)

40

30

20

10
Reconstruction Load

Ot—————7 1 T 1
0 50 100 150 200

time (sec)

Figure 11.21: Opportunistic Reconstruction in the SDS Scheme for an MDS code based

RAID. (Reconstruction Load is given in requests per 10 ms.)

201

We can embed Distributed String Sparing in ACATS. One of the virtual string
addresses refers to the the spare string. Because the string addresses are permuted, the
spare string will end up distributed equally among all actual strings. The in-string disk
address permutations will also assign a given virtual spare track with equal probability to
all reliability groups. In contrast to NDS a string failure following a disk failure cannot lead
to data loss.

The reconstruction work in the disk failure case is equally distributed among all
non-failed disks. Loads and utilization are consequentially the same as in the NDS scheme.

For a write quorum of w = 2 we obtain:

Agf — Aild_l_ Ty
nm — 1
A = yold _ - .)eld T . yod
v Y (n=1m Y mwm-1 "
-2 ¢+ ¢
DY —
f n—1)m (¢+C)+nm 1

¢ = (1—m()a

We now treat the case of a string failure.

Distributed String Sparing: Write Quorum w = 2

If teh write quorum is two, the reconfiguration process proceeds essentially as outlined in
Section 11.2.3. Because data from m disks have to be reconstructed, the total reconstruction
load for string failure is magnified by this factor over the disk failure reconstruction load.
In more detail: The read load at a surviving disk is increased by the reads directed to
spare tracks; this increase becomes permanent after the reconstruction process is finished
and reflects the lost savings of Distributed Sparing. The write load at a surviving disks is
diminished by writes involving by the failed string, that can not be handled by the spare
disks, and increased by the load to the spare string. The latter increase is permanent. We
have a track access load consisting of reads to reconstruct data and writes of these data.

As a formula, we have:

202

Mo = (1_|_ (1)) Aold

n—1
L—n(t) 7() \ ou
Ads — 1— A\°
_ 24270 o
B n—1 w

A= (Hﬁ)(qﬁ%)
¢ = (1-n())H

Distributed String Sparing: Write Quorum w > 2

With analogue justification as before we obtain:

Y- <1_|_ W(t))Agz(i
n—1
Y- /\Owld_l_ﬂ(t)AZ;ld‘l' m(t) Aold
n—1 n—1
_ n_2+27r(t)Aold
N n—1 w
—w+ 2 Pr n—w+1 Puw
Ns n—w ‘
t n—1 ¢+pr+wpw n—1 C—I_pr—}—wpwc
w—1)p,n— 2w+ 2 1
()p cr ¢
pr+wpw n—1 n—1

Again, we need to notice that some of the increases are permanent and represent the lost

savings from the distributed sparing scheme.

Distributed String Sparing: Example (continued)
We illustrate the reconstruction behavior in the string failure case in Figures 11.22 to 11.25.
We can observe that the disk utilization is much higher than in the disk failures cases. If
the baseline utilization is high, it can happen that the RAID has not enough capacity to
handle the reconstruction. If we do not reconstruct at all, we put less load on the disks,
but we will not see the performance getting better.

In our examples, the baseline loads are not high enough to prohibit reconstruction.
However, as the utilization is almost doubled in the beginning of a reconstruction phase,
almost only opportunistic reconstruction takes place and the reconstruction times are higher

than in the disk failure cases.

203

1.0+ 50

0.8 Portion Reconstructed 40

0.6 - 30
Utilization
0.4 - 20
0.2 - 10
Reconstruction Load

O e I B S S S | o777 77—

0 50 100 150 200 250 0 50 100 150 200 250

time (sec) time (sec)

Figure 11.22: Opportunistic Reconstruction in the Distributed Sparing Scheme for a one-

dimensional RAID after String Failure.

1.0 + 50

" Utl}mlo/n
0.8 40

Reconstruction Load

0.6 30
0.4 - 20
0.2 10

] Portion Reconstructed
0.0 ' T ' T ' | ' 0 ' T ' T ' T '

0 20 40 60 0 20 40 60

time (sec) time (sec)

Figure 11.23: Reconstruction in the Distributed Sparing Scheme for a one-dimensional

RAID with a Target Disk Utilization of 80% after String Failure.

204

1.0+

0.8

0.6

0.4

0.2

50

Portion Reconstructed 40

0.0

time (sec)

50 100

30
Utilization

20

10
Reconstruction Load
———— o+—T"7———"7F—
150 200 0 50 100 150 200

time (sec)

Figure 11.24: Opportunistic Reconstruction in the Distributed Sparing Scheme for an MDS
code based RAID.

1.0

0.8

0.6

0.4+

0.2+

Utilization

40

Portion Reconstructed

Reconstruction Load

0.0

T T T
20 40

time (sec)

T T T ' 0 T T T T T T T T
60 80 0 20 40 60 80

time (sec)

Figure 11.25: Reconstruction in the Distributed Sparing Scheme for an MDS code based

RAID with a Target Disk Utilization of 80%.

205

11.2.7 Comparison of an MDS Based RAID with a Level 5 RAID with
Distributed Sparing

It is interesting to compare the performance of two RAIDs with the same hardware
use and the same storage capacity. We compare the Level 5 RAID with one distributed spare
string with an MDS RAID with two check strings. Both RAID organizations employ 55 disks
organized in 11 strings. The storage capacity is the one of 45 disks. In case of a failure, the
Level 5 uses reconstruction and the MDS RAID uses reconfiguration. The reconfiguration
process for the MDS RAID is cut back as far as possible. We reconfigure only information
data on one of the check disks; hence, after reconfiguration an afflicted reliability group will
still contain two different kinds of check disks. This version of reconfiguration saves labor
over the one we explained earlier.

In the fault-free case, the disk utilization of the Level 5 RAID is far better than
the one of the MDS RAID, namely 0.363636A as opposed to 0.484848A for the MDS RAID,
where A denotes the RAID load. After a disk failure, both RAID organizations suffer
an unavoidable utilization peak of 0.438249A for the Level 5 RAID and 0.518989A for the
MDS RAID, which is caused by opportunistic reconstruction or reconfiguration respectively
only. After the reconstruction process the disk uitlization in the Level 5 RAID is increased
because the performance benefits of the distributed spare string are not fully available. The
final disk utilization for the MDS RAID is lowered, because one reliability group uses only
accesses two disks as opposed to three disks previously during a write operation. The effects
of a string failure are more extensive. Here we see, that the lighter reconfiguration process
at the MDS RAID leads to lower disk utilization, namely 0.672727A compared to 0.703030A
for the Level 5 RAID. The final utilization for both RAIDs are 0.40000A.

If we are interested in RAID performance guarantees and want to extend these
guarantees to the string failure case, we conclude, that actually the MDS RAID has better
performance. This conclusion is in spite of the one third higher disk utilization of the MDS

RAID in the fault-free case.

206

1.0 1.0
0.8 - 0.8 -
o o
S 06- S 06-
@ @
N N
'_‘D: --- '_‘D:
¥ 04 —_N %
[a) [a)
0.2+ 0.2+
0.0 T ' T ' T ' 0.0 T ' T ' T
0 200 400 0 200 400
Time (sec) Time (sec)

Figure 11.26: Disk Utilization for a Level 5 RAID with Distributed Spare (solid line) and
an MDS RAID (dotted line) in the Disk Failure Case (left) and the String Failure Case

(right).

11.3 Classic Level 5 RAIDs

In one way or other, we have already done most of the analytical work for this
organization. Because in a classic Level 5 RAID the reliability groups are fixed and what
happens in one does not influence performance at another reliability group, we can consider
a classic Level 5 RAID for all our practical purposes as being an ensemble of m mini-RAIDs
each consisting of a single reliability group. The peak utilization in a classic Level 5 RAID
does not depend on the kind of component that failed, but the number of affected disks

does.

11.3.1 No Spares

We can apply the results for string failure from Section 11.2.1 to the classic Level
5 RAID for both disk and string failure. In the former case, just set m = 1. There is no
performance gain for ACATS in the string failure case, but a considerable one for the disk

failure case. If RAID reconfiguration is used, the performance benefits in case of a disk

207

failure are limited in a classic Level 5 RAID to the one reliability group affected and not

spread, as in ACATS over most disks.

11.3.2 Naive Distributed Sparing

In Naive Distributed Sparing a space amounting to s disks (typically s = 1 or
s = 2) is set aside to provide room for reconstruction of data on a failed disk. FEven

though the classic Level 5 RAID features fixed reliability groups, this spare space is evenly
s(n=1)+(m—s)n

distributed among all disks. A given reliability group consists on average of -

tracks.

Classic NDS: Write Quorum w = 2
A reconstruction operation needs to access

_ s(n—=2)+(m—s)(n—1)

m

tracks besides the one to be written. We can calculate the load at the surviving disks in

the same reliability group with the failed one:

A= ol (1) \old

nm—1"
Y - /\Z,ld—l_ﬂ(t)/\i,ld—l- m(t) Aold
n—1 nm — 1
+¢
I A ¢
t n—1(¢+C)+nm—1

¢ = (1-n()r

The load at the other disks increases insignificantly to

Y (1) Aold
nm — 1
MY = ol y (1) Aold
nm — 1
N/ ¢
¢ nm — 1

The utilization at the disks in the same reliability group almost doubles in the
beginning, but then returns to the a level that is only slightly increased over the baseline
utilization and coincides with the utilization throughout the RAID. Because the peak uti-
lization at the disks in the same reliability group is high, the reconstruction times are much

higher.

208

1.0
0.8 Portion Reconstructed
0.6
Utilization (Same Reliability Group)
04
Utilization (Other Reliability Group)
0.2
LU e L S L L B
0 50 100 150 200
time (sec
10+ (520)
Utilization (Same Reliahility Group)
0.8
0.6
04
Utilization (Other Reliability Group)
0.2
Portion Reconstructed
00 L A A —
0 20 40 60 80
time (sec)

20

10
Reconstruction Load

T T
0 50 100 150 200
time (sec)

30

Reconstruction Load

0 " T " T " T " 1
0 20 40 60 80
time (sec)

Figure 11.27: Disk Utilization in the NDS scheme for a Classic Level 5 RAID. We use

opportunistic reconstruction and constant utilization.

209

Classic NDS: Write Quorum w > 2
The NDS scheme performs operations as described in Section 11.2.4. The average number

of tracks in a reliability group is still o = stn=24(m=s)("=1) 1 contrast to ACATS, the

m

reliability group is fixed and much of the load changes (all, but the operations at the spare)
are distributed over the n—1 disks in the reliability group instead over the (n—1)m disks in

different strings. Consequentially, we have for the loads at the disks in the same reliability

group:
/\gf — /\ild_}_ ﬂ-(t) /\gld
nm — 1
N old ___Pw (w—1) (1) Aold
pr+wpy (n—1) nm — 1
+2—-w Pr oc+2—w
A= 2 + .
f AT
" w—1)p, o—2w+3
L2 o cr (w—1)py o—2w
pr+wpy (n—1) Pr + WPy (n—1)
4 p+¢
nm — 1

The behavior after a disk failure is very similar to that in the scheme with reconstruction

of spares.

Classic NDS: Example (continued)
We continue our example. In Figure 11.27 we show the utilization at the classic One
Dimensional RAID and in Figure 11.28 for the classic MDS based RAID. As one can see,

the peak utilization is quite high and the reconstruction time relatively long.

11.3.3 Safe Distributed Sparing

The derivation of the load formulae for SDS mimics the one in Section 11.3.2. We

content ourselves with giving the formulae:

Classic SDS: Write Quorum w = 2

If the write quorum is two, we have:

/\gf — /\ild n ”T(t) /\gld
nm — 1
A el _ l—m t)/\old (t) \old
v v (n—=1)"" nam-1"

210

Portion Reconstructed

Utilization

100 200 300
time (sec)

Utilization

0.8

0.6

0.4+

0.2+

0.0

Portion Reconstructed

" T " T " T "
20 40 60

time (sec)

30

20

10
Reconstruction Load

R e = ——

0 100 200 300

time (sec)

0+ ' T ' T ' T '
0 20 40 60
time (sec)

Figure 11.28: Utilization at a Classic MDS RAID using NDS. We show opportunistic re-

construction only and constant utilization.

211

1
Y
1 m-1
A=
¢ = (1= ()
Classic SDS: Write Quorum w > 2
If the write quorum exceeds two, we have:
A= ol (1) \old
" " nm—1"
A= el _ puw_ (w—1) m(t) yold

pr+wpy (n—1) nm—1"

i stgma+ 2 — w Pr ‘U—I—Q—w
S i R DR
Puw o (w—1)py 0+ (3 —2w) (1)
+p7,—|—'wpw(n—1)c pr+wpy, (n—1) C+nm—1(¢+c)
1 -1
Xy = T (6+0)

nm—1 m

We present the disk utilization under SDS in Figures 11.29 and 11.30.

11.3.4 Distributed Sparing of a String

In both the disk failure and the string failure case, the RAID will develop peak
utilization equal to that of a RAID with same dimensions with ACATS for the string failure
case. We can decrease the load in the disk failure case by distributing the virtual spare
disks over all disks in the RAID, instead over all disks in the appropriate reliability group.

Then the behavior is that of the NDS scheme.

11.4 The Two-Dimensional RAID

We only consider the two dimensional RAID organization with ACATS. Without
ACATS, a two dimensional RAID shows the same poor performance as a Level 4 RAID.
There is little performance difference between an MDS based RAID with 2 check disks per
reliability group and ACATS and the two-dimensional RAID.

212

1.0+ 50
Portion Reconstructed

0.8 1 40

0.6 30
Utilization

(Same Reliability Group)

0.4 — 20
Utilization
(Other Reliability Group)
0.2 10
Reconstruction Load
L S S oO————T—— 7771
0 50 100 150 200 0 50 100 150 200
time (sec time (sec
1.0 (se0) 50 (se0)
Portion Reconstructed
0.8
Utilization
J (Same Reliability Group)
0.6
044 Utilization 20 Reconstruction Load
i (Other Reliability Group)
0.2 - 10
00 ' T ' | ' T ' 1 0 ' T ' T ' T ' |
0 20 40 60 80 0 20 40 60 80

time (sec) time (sec)

Figure 11.29: Effects of SDS on the Classic One-Dimensional RAID: Opportunistic Recon-

struction and Constant Peak Utilization.

213

10+

0.8

0.6

0.4

0.2

0.0

Portion Reconstructed

Utilization

0

1.0

100 200 300
time (sec)
Portion Reconstructed

0.8

0.6

0.4+

0.2+

0.0

Utilization

T T T T T T
20 40 60

time (sec)

30

20

10
Reconstruction Load

R e = ——

0 100 200 300
time (sec)

40

Reconstruction Load

30

20

10

0+ ' T ' T ' T '
0 20 40 60
time (sec)

Figure 11.30: Effects of SDS on the Classic MDS based RAID: Opportunistic Reconstruction

and Constant Peak Utilization.

214

We assume that the RAID consists of N = n2 + 2n disks and is organized in s

strings of d disks each. If a disk failed, then there are N — d disks not in the same string.

ACATS will place these disks with the same probability of %:31 in a same reliability group
as the failed disk.

11.4.1 No Spares

Two Dimensional RAIDs: Disk Failure:

In case of a disk failure, a write to the failed disk as a check disk proceeds as a normal
write involving one less disk. As long as we are not using strong write synchronization, we
do not see a change in load or utilization at the other disks.

If we write to the failed disk as a message disk, we need to read the disks of one
reliability group (n reads), calculate the old data on the failed disk, then the A value. Then
we can write the check data in the other reliability group and do a simple write (which
counts as a read) to the check disk in the reliability group just read. The load of writes to
the failed disk as a message disk is p,,A/N. Our analysis is slightly on the pessimistic side,
since it stands to reason that for normal loads the second access to one of the check disks
does not have a second seek time component. The write load is slightly reduced at all other
disks.

A read to the failed disk involves reading all the other n disks in one of the
reliability groups.

We obtain for the disks outside the string with the failed disk:

rho, A (n4 1)py,A np, A

Y
! N N(N —-d) N(N-d)
n n+1
— 1 . Aold Aold
<+N—d> " +3(N—d)w
N 3pel pul

N (N —d)N
1
1— Aold
(3(N — d)) v

No Spares: String Failure
The disks in a string all belong to different reliability groups. Hence, we need to multiply

215

the load changes with the number of disks in the failed string to obtain the new load:

dn) d(n+1))
Asf — 1 i Aold Aold
! <+N—d> ! +3(N—d.)w

d
Adf — (1 .) Aold
w SN —a)) ™

No Spares: Example

We choose the middle sized one our two dimensional RAIDs in Chapter 5 as an example.
This RAID contained 16 strings with 5 disks each. A reliability group consisted of 8 disks.
We again use a read to write ratio of 2:1. The utilization of disks is then 0.33333A. After
a disk failure, the figure increases to 0.34488A or an increase of 4.667% . The utilization in
the string failure case reaches 0.38611A for an increase of 15.83% . The impressive numbers
are explained by the worse capacity to number of disks ratio and by the small number of

disks in a string.

11.4.2 Reconfiguration on one Dedicated Check

Our scheme is a simple translation of the Reconfiguration on Check schemes con-
sidered previously. Whenever we access data stored as message on the failed disk, we
reconstruct the track on one of the check disks. After repair, the RAID has to reconstruct
the original distribution of check and message data. Because this can be done at a slow
rate, we are only interested in the peak utilization after a failure.

We perform a read from the failed disk by reading the » — 1 tracks in one of the
reliability groups, and reading and the writing the check disk in the reliability group. We
perform a write to the failed disk (as message disk) by accessing all the message tracks in
one of the reliability groups and then do a track write (involving a previous track read)
at the check disk in the reliability group. At the other check disk, we do a normal write,
because we have the A value available. The response times of these two operations are
relatively poor.

The probability = that data is already stored on the check disk increases quickly.
The disks outside the string with the failed disk will share the read load originally directed
to the failed disk. In addition, the write load in the strings not containing the failed disk will

suffer a permanent change. One reliability group will not be having a check disk. Imagine

216

that this reliability group is the first column. Any write addressed to this column will only
generate one instead of two check writes. Hence, the total write load will decrease from

3pwA to

1 1
B 2 3puA + —2puA.
n n

This decrease is however only experienced by the N — d disks outside the string with the

failed disk. Hence, their write load decreases by ﬁ%pw/& which, in terms of the old

write load, is ﬁ/\jﬁd. Because in addition these disks take over the write load of the

failed disk, we see an increase in the write load of ﬁprA. As we have remarked, one

write results from attempted writes to the failed disk in its capacity of message disk. This

increases the write load by p,,¢ (the load of this kind) divided by N — d.

Adf — 1 4 Aold
r (+ (IV — d)) r

pwl T2puA Pl
n(N—-d) N-d N-d

= (-)6+0)
ML= (640

(= (1-ms

4

AT =\ ld —

For a string failure, we observe the differences magnified d times:

dr
Ads — 1 old
r (+ (IV _ d)) r
)\d.s = \ld— dpr dﬂ-prA pr

n(N—-d)' N-d N-d
Moo= (n=-1)(0+0)
AL, = (040

dA

¢ = (=-m+

11.4.3 Use of a Spare Disk

After data is reconstructed on the spare disk, the utilization at all other disks is

the same as before.

217

For a read to the failed disk we read n disks in the same reliability group. If we
write to the failed disk as a message disk, we read a track at the n — 1 other message disks
in one of the reliability groups to which the failed disk belongs, then, we read the track
at the check disk in this reliability group and write the new block; this counts as a write
operation. With the information gathered, we can now reconstruct a track’s worth on the
spare disk and also use the A value to write to the other check disk in a normal way. We
handle a write that uses the failed disk as a check disk by normally writing to the message
and the other check disk. To reconstruct the track data on the failed disk, we read the
other n — 1 disks in the same reliability group, but we do not need to read the track at the
message disk, because we already swept through the whole track during the write and just
need to store this information.

Hence, for the disks outside the string with the failed disk, (as well as for the disks
on this string,) the read and the write load proper has not changed. In addition, depending
on the character of the reconstruction, we read n tracks (for a forced reconstruction and
an opportunistic reconstruction request arising from a read request) or n — 1 tracks (for a
write triggered opportunistic reconstruction.)

We obtain for the disks outside the string with the failed disks:

Adf — Aold
Adf — Aold
-1 3p
Adf — n (Pr) n w
t N —d pT+3pu,C+¢ +JV—d,0T+3pu,C

¢ = (- A7)

At the spare, the load is

A, = wAdd
Ay = 7w
At = 94 (¢

If we compare with a similarly dimensioned MDS based RAID with 2 check disks
per reliability group, we see that the utilization is only slightly higher for the two dimensional

scheme.

218

Reconstruction on Check: Example (continued)
Using opportunistic reconstruction, we observe an initial utilization increase of 9.14%, that

quickly decreases to the original utilization. We present the results in Figure 11.31

11.4.4 Naive Distributed Sparing

In naive distributed sparing, the load at the spare is equally distributed over the

remaining N — 1 disks. We obtain for the loads at the disks outside the string with the

failed disk:

A = (1 T)/\old

" + N-1)"

Y - (1 L) \old

v + N-1/""

A\ n < Pr)
t N —d pr—|—3pr+¢

-1 3py
n Pu__ ¢y P+ ¢

N —dp, 4+ 3py N -1
¢ = Q-mO

NDS: Example (continued)
We extend our example to the NDS scheme. The utilization (see Figure 11.32) increases

initially to about 10% and then decreases to about 1.7% .

11.4.5 Safe Distributed Sparing

We write the reconstructed data in safe distributed sparing using a track write
operation, involving either two or three disks, depending on whether the spare space is
located in a same reliability group or not.

First, we need to calculate the probability that an arbitrary disk is in a same
reliability group than an arbitrarily chosen one. A given disk serves for a random track
as a check disk with probability of 2rn/N and as a message disk with probability n?/N. A
check disk has n other disks in the same reliability group and a message disk has 2n. The
probability of another random disk to share a reliability group is hence

2(n? + n?)

P2=NN)

219

1.0+ 50
0.8 Portion Reconstructed 40
0.6 - 30
Utilization
0.4 20
Utilization (Spare)
0.2 10
Reconstruction Load
0 100 200 300 0 100 200 300
10 time (sec) i time (sec)
' Portion Reconstructed
| 60
0.8
Utilization J
| (Spare)
0.6 - 40
1 Reconstruction Load
0.4 Utilization |
4 20—
0.2
0.0 B L L L L B] O—mmmmmm
0 10 20 30 40 50 0 10 20 30 40 50
time (sec) time (sec)

Figure 11.31: Utilization at the Two Dimensional RAID after a Disk Failure using Recon-
struction on Spare Disk. We use opportunistic reconstruction (top) and constant spare disk

utilization (bottom).

220

1.0 50

08— Portion Reconstructed 40 Reconstruction Load
0.6

0.4

Utilization
0.2
ow4+—r-—"—7——r———1———T ———T 77—
0 50 100 150 200 0 50 100 150 200

time (sec)

time (sec)

Figure 11.32: Utilization at the Two Dimensional RAID after a Disk Failure under NDS

with Opportunistic Reconstruction

which coincides with the probability that a reconstruction operation needs only two instead

of three write operations. The expected number of track writes per reconstruction on spare

space is then (with ps =1 — p3)

(2p2 + 3p3)(¢ + ()

We can calculate the load at the disks outside the string with the failed disk by

adjusting the load at the spare accordingly and then distribute the load over the right set

of disks.

2\

\YJ

(14 5)
NTi d <pr f3pw5 * ¢) i ;_—zm ip;pwg
LI 4)

(1= M)+ X30)

221

We can, again, observe that the load is slightly higher than for a similarly dimen-

sioned MDS RAID.

SDS: Example (continued)

We present the utilization behavior under SDS in Figure 11.33.

11.4.6 Distributed Sparing of a String

The effects of a disk failure are the same as in NDS. We treat the case of string
failure only. The analysis parallels that for the use of a spare string and its adjustment to

naive distributive sparing.

Me= (14 marg) At
Me= (14 marg) At
, -1 3p, (¢ + Q)
! N —d ,07,—}—3pr+¢ + N—d,or—|—3pr+ N—d

¢ = (1=mdA + A7)

Distributed String Sparing: Example (continued)

We present the utilization behavior after a string failure in Figure 11.34. The large number
of strings implies that more disks survive a string failure and share the reconstruction work
equally compared to the MDS organization. The peak disk utilization is only 52.5% over

baseline load as a consequence of the higher hardware costs.

11.5 A Metric for Reconstruction Speed

A storage unit failure (disk or string) leads to a utilization peak for most disks in
the RAID. The speed of reconstruction on spare measures the inconvenience users might
experience during this period. The reconstruction time also influences the reliablity of the
RAID. However, as we have seen, reconstruction times of less than a minute are hardly
noticeable. ACATS and other declustering techniques that spread the workload over a
larger number of disks reduce reconstruction speeds in the disk failure case considerably.
This positive effect on reliability is far outweighed by the larger probability that certain

unit failures lead to data loss and the MTTDL values are lower.

222

1.0+ 50
0.8 Portion Reconstructed 40
0.6 30
Utilization
0.4 20
0.2 10 Reconstruction Load
00 f—+————r+——r 77—
0 50 100 150 200 0 50 100 150 200
time (sec time (sec
1.0 (sec) 60 — (se0)
08]
Portion Recongtructed 40 | Reconstruction L oad
0.6
044 Utilization
20
0.2
00 ; , : , : | 0 : , : : : |
0 20 40 60 0 20 40 60
time (sec) time (sec)

Figure 11.33: Utilization at the Two Dimensional RAID after a Disk Failure under SDS. We

use opportunistic reconstruction (left) and constant disk utilization (right). (Reconstruction

load is given in tens of requests per millisecond.)

223

1.0 4 50
0.8 - Portion Reconstructed 49
0.6 30
. Reconstruction Load
04 Utilization 20
0.2 10
0.0 T 0 e e
0 100 200 300 0 100 200 300
i time (sec) i time (sec)
1.0 1.0
Utilization] Utilization
0.5 0.5
] Portion Reconstructed] Portion Reconstructed
0.0 fFrrrrrrrr T N N T 0.0 fFrrrrrrrr T N N T
0 10 20 30 40 0 10 20 30 40
time (sec) time (sec)

Figure 11.34: Utilization at the Two Dimensional RAID after a Disk Failure under SDS. We
use opportunistic reconstruction (left) and constant disk utilization (right). (Reconstruction

load is given in tens of requests per millisecond.)

224

RAID Organization Reconstruction Time (sec)
Level 5 ACATS: NDS 22.45
Level 5 ACATS: SDS 23.65

Level 5 ACATS: String DS 20.19

MDS ACATS: NDS 20.19

MDS ACATS: SDS 21.26
Level 5: Classic NDS 112.26
Level 5: Classic SDS 118.25

Level 5: Classic String DS 100.94

MDS Classic: NDS 100.94

MDS Classic: SDS 106.32

Table 11.2: Reconstruction Times for RAID Organizations with NDS, SDS and String

Distributed Sparing

In order to capture reconstruction speed in a single metric (akin to the MIPS
computer speed ratings) we make several assumptions. The resulting metric values are
not necessarily meanigful as absolute numbers but capture well the relative benefits of the
schemes.

Our assumptions are:

1. The baseline utilization at each disk is 30%. This is at the high end of current RAID
utilization. At this utilization the response response time to a simple read is about

1.43 times the service time.

2. The reconstruction on spare uses both optimistic and forced reconstruction and targets
a utilization at the disks of 60%. At this rate the response time is about 2.50 times

the service time.

3. The probability of a hit (i.e. an access finds an item already reconstructed) is the
proportion k of already reconstructed data on spare. We make the modeling choice
because there are no reasonable assumptions about the probability and because the
assumption leads to an easily solvable ordinary equation. Our assumption assumes

no locality at all.

The baseline utilization at a disk is ug. The target peak utilization at a disk during

the reconstruction is u.. The failed disk (or string) is replaced by spare space distributed

225

evenly over M disks. The reconstruction workload W expresses in seconds the effort to
reconstruct a single track. It is evenly distributed over N disks. Finally, we denote oppor-
tunistic and forced reconstrustion by ¥ given in requests per second. We express the target
utilization u. during reconstruction as baseline utilization, added work from the failed disk
and reconstruction work. This target utilization is valid for a disk that contains both spare
space used to replace storage space on the failed disk and that is part of the reconstruction
effort. The formula does e.g. not apply to disks on the same string, because they never

take part in the reconstruction effort:

U w
UC:U0+H'ﬁ+’¢‘ N

k()= T /0 " o(r)dr

with disk capacity T, we obtain through differentiation

Y W
™ v+ N ¥
which is solved by
N
1 =C -In(—Rt); with R = qu\(iIW
By substitution in the original equation we determine
N(ue — 1
Y = (u}/V = -exp(—Rt)
e — ug) M
K = (e —)M (1 —exp(—Rt))
o

By setting k = 1 and using u. — ug = ug we obtain
tree = —R™ ' In(1 — M™1)

for the reconstruction time. An approximation is

T™W
U()IV'

trec

We give the reconstruction times for our examples in Table 11.2. The two-dimensional RAID
has the same behoviour as the MDS RAID with ACATS in our slightly simplified model.
The times quoted are for reconstruction after disk failure. For string failure, the times for
the classic organizations are unchanged and the times for the ACATS based organizations
are identical to the times for the classic sister organization. We can conclude that the

change from NDS to SDS lengthens the reconstruction process by about 5%.

226

11.6 Synthesis

We have measured performance in terms of disk utilization. Peak disk utilization
determines performance for all classes of requests through the time for a device to clear.

In all instances, ACATS has proven its superior performance in disk failure scenar-
ios, just as Muntz and Liu ([25]) have predicted. Reconfiguration on Check makes the best of
a bad situation, if no spare space is available, by quickly gaining the performance benefits of
unrelated disks. By updating whole tracks we gain fast reconstruction and reconfiguration
times.

Comparison of the load formulae show that the two-dimensional RAID preforms
almost as good as a MDS RAID with 2 check strings in failure cases.

It seems that we need to store large amounts of data for reconstruction processes,
which would put a severe strain on the non-volatile cache. However, the properties of the
parity code and MDS codes in general imply that we do not have to wait for all data
fragments to arrive from different disks; instead, we only need to keep one intermediate

result to which the fragments can be added.

Chapter 12

Application of MDS Codes for
Data Bases

We have introduced the use of MDS codes for RAIDs. In this chapter we apply the
same storage idea to Distributed Databases. Academic research in this field has centered
mainly on the development of secure update protocols which has to synchronize among
sites in a chaotic environment. Qur contribution here presupposes such a scheme and
concentrates on the storage scheme and the conditions it poses to the protocols.

Data bases are distributed over several sites to allow users faster and more reliable
access. Multiplying storage needs and much more complicated update protocols are the
price to pay. Our scheme trades the advantage of reading local data for much lower storage

costs. It uses MDS code data dispersion to make data very available without keeping copies.

12.1 Storage Scheme

The database is organized in equal sized pages. The pages are the atomic storage
units: each data access addresses a whole page. The pages themselves are organized in
blocks of n pages each. We treat the bytes in parallel position as the information symbol of
a linear, systematic MDS code and store the check bytes in m check or secondary pages. A
block consists then of n primary pages and m secondary pages. The MDS property of the
code used assures us, that the database is available for reads if only n sites are accessible.

Our basic scheme stores the m + n pages of a block at as many sites. All data is

214

215

0.10 4

0.08

0.06 —

0.04 —

I navailability Probability of Data

0.02 —

0.00 T T T T T T T T T I T T T T T T T T T 1
0.0 0.1 0.2

I naccessability Probability of Site

Figure 12.1: Data inavailability in dependence on site inavailability probability for the MDS
storage scheme with 3 primary and 2 secondary pages per block (solid line), a triple (dotted)

and a double replicated database.

available when at least m sites can be accessed. As m can be smaller than n, our scheme
achieves excellent data availability for a small cost in storage. In Figure 12.1 we give the
data availability for our scheme and compare it with two other schemes. OQur scheme uses
3 primary pages and 2 secondary pages per block and we compare it with a double and a
triple replicated distributed data base. The higher number of sites makes our scheme safer
while the total storage amount, 1.67 times the size of all records, is smaller than the storage
needs of the other schemes which is 2 or 3 times this amount, respectively. We can even
prove mathematically that a “storage optimal” database system has to use an MDS code.

The storage efficiency of our scheme comes at a price. If a single site becomes
inavailable, then access to the primary pages stored there have to be reconstructed by
accessing m other sits. In a read oriented environment this can almost double the workload
if a site has failed. To balance the site workload we distribute the primary and secondary

pages of a block over all the sites. The lay-out is illustrated in Figure 12.2 (upper half)

216

]]]]]
]]]]]
Site 1 Site 2 Site 3 Site 4 Site 5

]]]

]]]]

Site 2 Site 3 Site 4 Site 5

Figure 12.2: The Storage Scheme with m = 3 and n = 5 before and after Loss of a Site.

where the first block consists of primary pages P1, P2, P3 and secondary pages S1, 52, the
second block of primary pages P4, P5, P6 and secondary pages S3 and S4. The workload
is now evenly distributed before and after a site becomes inaccessible. In some instances,
access to data shows temporal locality, e.g., if the scheme is used to store archival data. To
further reduce the workload after a presumed site failure, we can cache reconstructed data
as is shown in Figure 12.2 (lower half). After Site 1 has become inaccessible, an access to
page P1 results in accesses to P2, S1 and S2 to reconstruct page P1. The reconstructed
page is then stored for further use at Site 4. The replacement sites are chosen by a scheme

that is transparent to all sites.

12.2 Read and Write Protocol

We assume that the database runs a local serializability protocol at each site.
Furthermore, we assume a global consistency protocol, e.g., one based on votes, to assure
consistency among the database sites.

The basic write operation is in principle the same as for the updates in an MDS

217

RAID. A write that changes a primary page needs to propagate the A value between the
old and the new page to each site containing a secondary site. There, the new secondary
page is calculated from this A value and the old secondary page.

A typical update scheme would first read the old records and then propagate the
the A value to all sites. The other primary sites do not need to change their local storage
contents but only act as voters.

A typical read would gather enough votes to achieve a read quorum, and preferably
read from the site which stores the primary page that contains the record requested. Alter-
natively, n pages of the same superblock are gathered and the primary page is reconstructed

from these.

12.3 Performance

We assume a write and read quorum of ¢. In the absence of an inaccessible site
and , a small read request involves 2(n + m) messages and one transmission containing
the primary site if the primary page is not stored locally, which happens with probability
1/(n+ m). A write can be organized with the same number of messages and transmission
of only 1+ m pages. If there is an recognized inaccessible site, the expected number of page
transmissions for a read increases from (n+m—1)/(n+m) to 2n+m —2/(n+ m) because
a primary page stored at the inaccessible site needs to be reconstructed from n pages, of
which one is locally available.

The need for data transmission is the major drawback of our storage scheme and
makes the scheme unusable for databases with frequent queries that involve scanning of

many records.

12.4 Use for Archival Storage

Our scheme is best adaptable to an archival storage environment in which the
most common operation is a record lookup. A more static database management scheme is
suited to such an environment. We assume that each site contains enough information to
locate records on pages.

To further facilitate the database management, we assume that the assignement

218

of records to pages is transparent. In addition to the read and write operations, as sketched
before, we now introduce a light read operation, which only accesses the site containing the
primary page with the record in question. A light update operation is administered by the
site containing the primary page and hence avoids the necessity of a read of the page over
the network.

To adjust for failed or inaccessible sites, we run a quorum based protocol that
excludes and rejoins those sites and which can be initiated by any site that notices a timeout
in connection with one site. The consistency control can be facilitated and double checked

by a signature scheme.

12.5 Signature Schemes

Signatures are an efficient mean to compare local copies of distributed data bases
and thus ensure that discrepancies are quickly detected (see [10],[24].) We discuss signature
schemes here because they usually presuppose the actual existence of the data at all sites.
We discuss two signature schemes that apply to our storage scheme.

A signature scheme divides the data base contents in pages. It maintains page
signatures which compress the data in the page into a small unit of typically a few bytes.
While it is possible that different pages have the same signature, the likelihood is only
2~! where [is the length (in bits) of a signature. The page signatures themselves are
then compressed into a single data base signature (usually the exclusive OR of all page
signatures) which is then used for comparison among sites. If signatures disagree we know
that the copies of the data base differ and if they agree we know with the very low error
probability 2=¢ that they agree. Efficient algorithms deal with the diagnostics of a discovered

discrepancy.

12.5.1 Linear Schemes

We interpret the bytes of a data base page as the elements of the Galois field with
256 elements and calculate the page signature as one or more bytes obtained as a linear
function of all the characters in the page. This method of calculation yields page signatures

that can be subjected to the same method of generating checks as the data themselves. A

219

short calculation reveals that a check of page signatures is the page signature of the check
page. Furthermore, to update a check page signature, we only need the A value of the
updated page signature, which can be directly calculated from the old and the new primary
page signature. Consequentially, a site can update signatures for all pages by monitoring
the signatures of page updates.

A signature scheme based on linear page numbers behaves in every other aspect
as the signature schemes considered in the literature. In the next Section, we present a

signature scheme that is radically different.

12.5.2 Smart Version Numbers

Version numbers are a standard tool of consistency control in distributed systems.
Our scheme changes version numbers in a history sensitive way using update signatures.
Our probabilistic scheme detects lost updates and out of order updates (affecting the same
data) with arbitrary high likelihood. It diagnoses any discrepancies between the update
histories at different sites.

We assumed that the data base consists of many pages. We calculate an update
signature from the update command itself, the issuing site and the local time. The update
signature is several bytes long and is propagated along with the update command or can be
calculated by the receiving sites individually. A site that processes an update calculates both
a new page number for the page(s) affected by the update and a general version number,
which reflects the history of updates. We think of this version number as a condensed log.
The version number is passed along with any write or read requests to other sites where it
acts almost as a capability. If the version number of the sending site agrees with the version
number of the receiving site then both sites are in agreement: they have processed the same
updates in the same order. A small log of recent version numbers limits the number of

discrepancy resolution procedures necessary.

Calculation of the Signatures We calculate the update signature with any one of the
schemes proposed for signature schemes in general. The calculation of the page signature is
more involved. We interpret the update and page signatures as unsigned numbers between

0 and 2! — 1, where [is the length in bits. The new page number ppew is calculated from

220

the old page number p,|q and the update signature u using

Pnew = 2pg)q + -

Finally, the new version number is the exclusive-or of all page signatures.

Discrepancy Detection Capability Signature scheme cannot be absolutely secure, be-
cause they compress information. An optimal update signature scheme will yield the same
signature for two different updates with only probability 2=! and it is not difficult for a prac-
tical scheme to get close to this value. Similarly, page signatures cannot provide absolute
security: Any given page signature can be modified by a single update signature to yield
another given page signature. The likelihood of such an unintended aliasing is always 27!
and with this probability our scheme detects missing extraneous updates. Our scheme will
always detect two updates that are executed directly out of order and it will detect with
probability 27! that an update has been executed with more than one other request delay.
We give the proof below. The version number finally always reflects one errant page signa-
ture and more with probability 1 — 27!, Metzner’s algorithm, which is a version of binary
search, will find the offending pages. An implementation of our scheme will probably use a
small log of recent updates and thus gain the capability to diagnose most discrepancies ad

hoc.

Proofs We give the proofs for the effects of out-of-order updates on the page signatures.
Assume that the original page signature is p,)q and that updates with update signatures u
and v are performed out of order at two sites.

Let py)q denote the old version number and assume that updates with version
numbers u and v are performed out of order at two different sites. These sites calculate
page numbers p; = u+2v+4p,q and py = v+ 2u+4p,|q4- The difference amounts to u — v
which is zero if u and v coincide. Now assume that update u is performed after updates vy,

vy ... v, at Site One and before at Site Two. The page signatures are respectively

j21 w+2v1 +4vg+ ...+ 2%, + 2n+1pold

pr = w4204 42"y, +2%u+ 2" p 1y

221
The difference is zero if
v+ 2094 ...2" "y, = (2" = 1Du
Because 2" — 1 is odd, the equality holds for exactly one out of 2! signatures.
A Mutation of the Scheme If there is a danger of applying updates to the wrong
pages, a more complicated page signature and version number scheme can be used. In this

alteration, the signatures and version numbers are interpreted as non-zero elements of the

Galois Field with 2' elements. The page signature is updated according to the formula

Pnew = p(Q)ld s u.

The data base version number is calculated as a linear form of the page signatures. The

scheme can distinguish between updates with the same signature to different pages.

Appendix A

Glossary of Terms

Almost Complete Address Translation (ACATS) A scheme, that translates an ex-
ternal data block address in a two stage procedure to a internal data block address. In
one stage, all strings are permuted and in the other disks inside a string are permuted

by the addressing scheme.
Check Data RAID generated data that gives redundancy.
Check Disk A disk storing check data.

Disk Failure Pattern (DFP) A set of disks in the RAID, whose failure would lead to

irrecoverable data loss in the RAID.

Distributed Sparing A scheme in which spare space amounting to a whole string is dis-
tributed over the whole RAID. The utilization of disks is smaller, because each disk

contains some spare space.

Forced Reconstruction Reconstruction on spare space that is triggered by the disk con-

troller.
Information Data User generated data that is stored in unchanged form on a disk.

Information Disk (Synonymous to Message Disk) A disk that stores message (=informa-

tion) data.

Main String A string of disks that carry data under normal operating conditions, as

opposed to a string of spare disks.

222

223

Message Disk (Synonymous to Information Disk) A disk that stores message (=informa-

tion) data.

Minimal Disk Failure Pattern (MDFP) A disk failure pattern, that does not contain

a smaller Disk Failure Pattern.

Naive Distributed Sparing (NDS) A few disks worth of spare disk is distributed over
the whole RAID. The advantages of distributed sparing are made available for smaller

amounts of spare space.

Opportunistic Reconstruction Use of write piggy-backing and read redirect to recon-

struct data on spare.

Reconfiguration on Check A performance boosting scheme that reconstructs message

information on check disks to replace a failed disk or string.

Reconstruction on Spare In the case of disk or string failure, the message contents of

the failed disk are written on a/the check disk.

Reliability Group A set of data carriers (like disks themselves or disk blocks). The data
in a reliability group shares redundancy that makes reconstruction of data possible in

the event of a failure.

Save Distributed Sparing (SDS) A reliability improvement of Naive Distributed Spar-
ing, in which reconstruction of lost disk data uses RAID writes to protect recon-

structed data against further component failure.

Single Disk Equivalent Mean Time to Dataloss (SDE MTTDL) A RAID reliabil-
ity measure that gives the MTTF of a disk such that a collection of disks offering the

same amount of storage has the same reliability as the RAID.
Spares’ String A string of spare disks as opposed to a Main String.

String A set of disks in a disk array that share components essential for the function of

the disks.

Bibliography

[1] Khaled A.S. Abedl-Ghaffar and Amr El Abbadi: An Optimal Strategy for Comparing
File Copies, Technical Report, University of California, Davis and Santa Barbara, 1992

[2] Divyakant Agrawal and Amr El Abbadi: Storage Ffficient Replicated Databases, IEEE
Transactions on Knowledge and Data Engineering, 1990, p.342-352, volume 2,

[3] Azer Bestavros: IDA-based Redundant Arrays of Independent Disks, Proceedings of
the First International Conference on Parallel and Distributed Information Systems,
December 1991, p. 2-9, Miami Beach,

[4] Mario Blaum, Hsieh Hao, Richard L. Mattson and Jai Menon: A Coding Technique for
Recovery against Double Disk Failures in Disk Arrays, US Patent Docket #SA889-0443
pending, 1989

[5] Walt Burkhard and Jai Menon: MDS Disk Array Reliability, Technical Report, Uni-
versity of California, San Diego, CS92-269, December 1992

[6] Walter A. Burkhard and Jai Menon: Disk Array Storage System Reliability, Digest of
Papers, The Twenty-Third International Symposium on Fault-Tolerant Computing, p.
432-441, June 1993, Toulouse

[7] Walter A. Burkhard, Kimberly Claffy and Thomas E. Schwarz: The Balanced Infor-
mation Dispersal Algorithm, Proceedings of the Eleventh IEEE Symposium on Mass
Storage Systems, October 1991, p. 45-50,Monterey, CA

[8] Walter A. Burkhard, Bruce E. Martin and Jehan-Francois Péaris: The Gemini
Replicated-File System Testbed, Information Sciences, volume 48, 1989 , p.119-134

[9] William Feller: An Introduction to Probability Theory and Its Applications ,
volume II, John Wiley Pub., 1968

[10] W. K. Fuchs, K. Wu and J. Abraham: Low-Cost Comparison and Diagnosis of Large
Remotely Located Data Files, Fifth Symposium on Reliability in Distributed Software
and Database Systems, January 1986, 76-73

[11] Garth Alan Gibson:Redundant Disk Arrays: Reliable, Parallel Secondary Storage,
Ph.D.Thesis, University of California, Berkeley December 1990 (Report UCB/CSD
91/613)

224

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[24]

[25]

225

Garth A. Gibson, Lisa Hellerstein, Richard M. Karp, Randy H. Katz and David A.
Patterson: Failure Correction Techniques for Large Disk Arrays, Third International

Conference on Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS III), Boston, April 1989, p. 123-132

John L. Hennessy and David A. Patterson: Computer Architecture A Quantita-
tive Approach, Morgan Kaufmann Publishers, 1990

Mark Holland: On-Line Data Reconstruction in Redundant Disk Arrays, Ph.D. Thesis,
Carnegie Mellon University 1994

Ehud D. Karnin, Jonathan W. Greene and Martin E. Hellman: On Secret Sharing
Systems, IEEE Transactions on Information Theory, 1983, vol. 29, p. 35-41

Randy H. Katz, Garth A. Gibson and David A. Patterson: Disk System Architectures
for High Performance Computing,Proceedings of the IEEE, volume 77, 1842-1858,
December 1989

Donald E. Knuth: The Art of Computer Programming, Volume 1 / Funda-
mental Algortihms. Second Edition, Addison-Wesley Publishing Company, Reading
Massachusetts, 1973

Donald E. Knuth: The Art of Computer Programming, Volume 2 / Seminu-
merical Algorithms. Second Edition, Addison-Wesley Publishing Company, Reading
Massachusetts, 1981

Donald E. Knuth: The Art of Computer Programming, Volume 3 / Sorting
and Searching. Addison-Wesley Publishing Company, Reading Massachusetts, 1973

Edward D. Lazowska, Zahorjan, G. Scott Graham and Kenneth C. Sevcik: Quanti-
tative System Performance: Computer System Analysis Using Queueing
Network Models , Prentice-Hall Publishers, Englewood Cliffs, 1984

Edward K. Lee, Peter M. Chen, John H. Hartman, Ann L. Chervenak Drappeau,
Ethan L. Miller, Randy H. Katz Garth A. Gibson and David A. Patterson: RAID-II:
A Scalable Storage Architecture for High-Bandwidth Network File Service, University
of California, Berkeley,1992, UCB/CSD 92/672

Jai Menon and Richard L. Mattson: Distributed Sparing in Disk Arrays, Proceedings
of the COMPCOM Conference, San Francisco, February 1992, p. 410-416

Jai Menon and Dick Mattson: Performance of Disk Arrays in Transaction Process-
ing Fnvironments, Proceedings of the 12th International Conference on Distributed
Computing Systems, Yokohama, p.302-309, June 1992

J. Metzner: A Parity Structure for Large Remotely Located Data Files, IEEE Trans-
actions on Computers Vol C -32, No. 8, 1983

R. Muntz and John C.S. Lui: Performance Analysis of Disk Arrays Under Failure,
Proceedings of the 16th VLDB Conference, Brisbane, June 1990, p. 162-173

226

[26] Florence Jesse MacWilliams and Neil James Alexander Sloane: The Theory of
Error-Correcting Codes, North Holland, 1978

[27] Jehan-Francois Paris: Voting with Witnesses: A Consistency Scheme for Replicated
Data, Proceedings of the 6th International Conference on Distributed Computing Sys-
tems, Cambridge, May 1986, p. 606-612

[28] David A. Patterson, Garth A. Gibson and Randy H. Katz: A Case for Redundant
Arrays of Inexpensive Disks (RAID), Proceedings SIGMOD International Conference
on Data Management, Chicago, 1988, p. 109-116

[29] Franco P. Preparata: Holographic Dispersal and Recovery of Information, IEEE Trans-
actions on Information Theory, 1989, vol. 35, p.1123-1124

[30] Michael O. Rabin: Efficient Dispersal of Information for Security, Load Balancing,
and Fault Tolerance, Journal of the Association for Computing Machinery, 1989, p.
335-348, vol. 36

[31] Michael O. Rabin: In “Sequences, Combinatorics, Compression, Security and Trans-
mission” Springer-Verlag, 1990 , p. 406-419

[32] Martin Schulze, Garth A. Gibson, Randy H. Katz and David A. Patterson: How
Reliable is a RAID?, Proceedings of the COMPCON Conference, San Francisco, 1989,
p- 118-123

[33] Thomas J.E. Schwarz and Walter A. Burkhard: RAID Organization and Performance,
Proceedings of the 12th International Conference on Distributed Computing Systems,
Yokohama, June 1992, p. 318-325

