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Winnie-the-Pooh. By A. A. Milne, with decorations by E. H. Shepard. Methuen and Co,
London (publ.)

1. INTRODUCTION

Shared-nothing configurations of computers connected by a high-speed link,
often called multicomputers, allow for high aggregate performance. These sys-
tems gained in popularity with the emergence of grid computing and P2P ap-
plications. They need new data structures that scale well with the number of
components [Com. ACM 1997]. Scalable Distributed Data Structures (SDDS)
aim to fulfill this need [Litwin et al. 1993; SDDS-bibliography]. An SDDS file is
stored at multiple nodes provided by SDDS servers. As the file grows, so does
the number of servers on which it resides. The SDDS addressing scheme has no
centralized components. This allows for operation speeds independent of the file
size. They provide for hash, range or m-d partitioned files of records identified
by a primary or by multiple keys. See SDDS [bibliography] for a partial list of
references. A prototype system, SDDS 2000, for Wintel PCs, is freely available
for a non-commercial use [CERIA http://ceria.dauphine.fr].

Among the best-known SDDS schemes is the LH∗ scheme [Litwin et al. 1993,
1996; Karlson et al. 1996; Breitbart et al. 1996; Bertino et al. 1999; Knuth 1993;
Ramakrishnan 1999]. LH∗ creates scalable, distributed, hash-partitioned files.
Each server stores the records in a bucket. The buckets split when the file
grows. The splits follow the linear hashing (LH) principles [Litwin 1980, 1994].
Buckets are stored for fast access in distributed RAM, otherwise they can be on
disks. Only the maximum possible number of server nodes limits the file size.
A search or an insert of a record in an LH∗ file can be hundreds of times faster
than a disk access [Bennour et al. 2000; Bennour 2002].

At times, an LH∗ server can become unavailable. It may fail as the result of
a software or hardware failure. It may also stop the service for good or for an
unacceptably long time, a frequent case in P2P applications. Either way, access
to data becomes impossible. The situation may not be acceptable for an appli-
cation, limiting the utility of the LH∗ scheme. Data unavailability can be very
costly, [www.contingencyplanningresearch.com/cod.htm/1996]. An unavailable
financial database may easily cost the owner $10K–$27K per minute [Bartalos
1999].

A file might suffer from the unavailability of several of its servers. We say
that it is k-available, if all data remain available despite the unavailability
of any k servers. The information-theoretical minimum storage overhead for
k-availability of m data servers is k/m [Hellerstein et al. 1994]. It requires k
additional, so-called parity symbols (records, buckets . . . ) per m data symbols
(records, buckets . . . ). Decoding k unavailable symbols requires access to m
available symbols of the total of m + k. Large values for m seem impractical. A
reasonable approach to limit m is to partition a data file into groups consisting
of at most m nodes (buckets) per group, with independent parity calculus.

For files on a few servers, 1-availability usually suffices. The parity calculus
can then be the fastest known, using only XORing, as in RAID-5. The probability
of a server unavailability increases however with the file size. The file reliability,
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which is the probability that all the data are available for the application,
necessarily declines. At one point we need 2-availability despite the increased
storage overhead. Likewise, as the file continues to grow, at some point we
need 3-availability, despite further increase to the storage overhead. In fact, for
any fixed k, the probability of k-unavailability increases with the file size. For
largely scaling files, we need the scalable availability, adjusting k to the file
size [Litwin et al. 1998].

Below, we present an efficient scalable availability scheme we called LH∗
RS.

It structures the LH∗ data buckets into groups of size m, providing each with
K ≥ 1 parity buckets. The values of m and of K are file parameters that can be
adjusted dynamically. We call K the intended availability level. A group is typ-
ically K -available. Some can be (K -1)-available with respect to the current K
if the file just increased it by one. The new level diffuses to the groups progres-
sively with the splits. Changes to K value are transparent for the application.

The scheme’s theory originates in Litwin and Schwarz [2000]. Since then, we
have sped up the parity calculus, without compromising the storage overhead.
We also have progressively optimized implementation issues, especially the
efficiency of the communication architecture. We have realized a prototype for
the multi-computer of Wintel PCs on a typical LAN [Litwin et al. 2004a,b]. We
have analytically and experimentally determined various performance factors.
The work has validated our design choices. Below we report on all these issues.

Our current parity calculus is a novel erasure correction scheme, using Reed-
Solomon (RS) coding. Our storage overhead for k-availability is close to the op-
timal one of k/m. To our best knowledge, our schemes offer the fastest parity
generation (encoding) for our needs. We have also optimized the erasure cor-
rection (decoding), although with a lesser priority, expecting it to be much less
frequent, hopefully.

More specifically, we recall that an RS code uses a Galois Field (GF). The
addition in a GF amounts to XORing only. Multiplication is necessarily slower
[MacWilliams and Sloane 1997]. In departure from [Litwin and Schwarz 2000],
we determined the GF(216) and GF(28) to be more appropriate. Our scheme uses
now only XORing to generate the first parity symbol (record, bucket, . . . ). We
also only need XORing for the recovery of a single data bucket. In addition,
changes to a data record in the first bucket of any group result in XORing
only at the parity buckets, further speeding up 1/m of our encoding operations.
Moreover, we have accelerated the k-parity encoding and decoding, by intro-
ducing the logarithmic parity and decoding matrices. All this makes our parity
encoding scheme the fastest known, under the minimal group storage overhead
constraint, to our best knowledge of the k-erasure correction codes. Besides, our
high-availability features are transparent to the application and do not affect
the speed of searches and scans in an LH∗

RS file. These perform as well as in an
LH∗ file with the same data records and bucket size.

LH∗
RS is the only high-availability SDDS scheme prototyped to the extent

that we present. However, it is not the only one known. Some proposals use
mirroring to achieve 1-availability [Litwin and Neimat 1996; Breitbart and
Vingralek 1998; Vingralek et al. 1998]. Two schemes use only XORing to
provide 1-availability [Litwin et al. 1997; Litwin and Risch 2001; Lindberg
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1997]. Another XORing-only scheme LH∗
SA was the first to offer scalable avail-

ability [Litwin et al. 1999]. It can generate parity faster than LH∗
RS, but

sometimes has greater storage overhead. We compare various schemes in the
Related Work section.

To address the overall utility of the LH∗
RS scheme, we recall that the existing

hash file schemes store files on local disk(s), or statically partition (parallelize)
them over a cluster of nodes. The latter approach provides for larger files or
better efficiency of the (non-key) scans. As we have mentioned, the disks may
use underneath a hardware or software RAID scheme, 1-available RAID5 typ-
ically. This may adversely affect a record access performance, for example, by
segmenting some records, or manipulating blocs much larger than records,
as it works independently of the hash scheme. Partitioned files are some-
times replicated, for 1-availability typically given the incurred storage overhead
cost.

The LH∗
RS scheme is “plug compatible” with such schemes. It offers the same

functional capabilities: the key search, a scan, a record insert, update, and
delete. The access performance should in contrast, typically improve by orders
of magnitude, especially for files that can now entirely fit for processing into the
potentially unlimited (distributed) RAM of a multicomputer, while they could
not at a single node or a cluster. Our experiments with LH∗

RS files in distributed
RAM showed the individual key search to be about 30 times faster than a
single access to a local disk. A bulk search speeds up 200 times. Experiments
with inserts lead to similar figures, for up to a 3-available file. The application
may thus accelerate the query processing from, let’s say 30 minutes or 3 hours,
to a single minute.

Likewise, the administrator may choose the availability level “on-demand” or
may let it autonomously adjust to the file size. The storage overhead is always
about the minimal possible. Both properties are uniquely attractive at present
for larger and very large (Pbyte) files. Records are never segmented and data
transfers from the storage are not bigger, as the high-availability is designed
to work in accordance with the hash scheme in this way. Our experiments
showed furthermore that the recovery from a k-unavailability should be fast.
For instance, about 1.5 seconds sufficed to recover more than 10MB of data
(100 000 records) within three unavailable data buckets. Next, the file may
become very large, spreading dynamically over theoretically any number of
nodes. The scaling transparency finally frees the application administrator from
periodic file restructuring. Some are already eagerly waiting for this perspective
to materialize [Ben-Gan and Moreau 2003].

Hash files are ubiquitous. Legions of their applications could benefit from the
new capabilities of LH∗

RS. This is particularly true for the numerous applications
of major DBMSs. DB2 and Oracle, which use single site or parallel hash files,
and Postgres DBMS, which uses single site linear hash files. Other applications
affected by the current technology include video servers, Web servers, high
performance file servers, and dedicated mission-critical servers. In the latter
category, the rapidly and constantly growing data of a well-known large-scale
search engine may allegedly already need about 54.000 nodes [www.economist.
com].
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Fig. 1. LH∗
RS file data buckets, before (a) and after (b) the insert of record 77.

The presently unrivaled scalability of LH∗
RS files should also serve the emerg-

ing needs of data grids and of P2P applications, as we discuss in Section 6. In
particular, a number of new applications target files larger than anything op-
erationally workable till now, for example, the SkyServer project to cite just
one [Gray et al. 2002]. On a different note, the sheer access speed to data in an
LH∗

RS file together with its ability to quickly scale, makes it an attractive tool
for stream analysis. In this increasingly popular domain, streams often come
simultaneously from multiple sensors, thus needing storage at the generation
speed. Incidentally, the problem of collection of such streams from an airplane
engine, at Santa Clara University mechanical lab, triggered the original LH∗

scheme idea.
We describe the general structure of an LH∗

RS file in Section 2. Section 3
presents the parity calculus. We explain the LH∗

RS file manipulations in
Section 4. Section 5 deals with the performance analysis. Section 6 discusses
related work. Section 7 concludes the study and proposes directions for future
work. Appendix A shows our parity matrices for GF(216) and GF(28). Appendix B
sums up our terminology. We give additional details in Online Appendix C avail-
able in the ACM Digital Library regarding parity calculus, file operations, per-
formance analysis and variants of the basic scheme, including a discussion of
alternative erasure correcting codes.

2. FILE STRUCTURE

LH∗
RS provides high availability to the LH∗ scheme [Litwin et al. 1993, 1996;

Karlson et al. 1996; Litwin et al. 1999]. LH∗ itself is the scalable distributed
generalization of Linear Hashing (LH) [Litwin 1980a,b]. An LH∗

RS file stores
data records in data buckets, numbered 0, 1, 2. . . and parity records in separate
parity buckets. Data records contain the application data. A data bucket has the
capacity of b ≫ 1 primary records. Additional records become overflow records.
The application interacts with the data records as in an LH∗ file. Parity records
only provide the high availability and are invisible to the application.
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Fig. 2. LH∗
RS record structure: (a) data record, (b) parity record.

We store the data and parity buckets at the LH∗
RS server nodes. There is

basically one bucket per server. The application does not address any server
directly. It calls an LH∗

RS client component, usually at the application node.
The clients address the servers for data search or storage over the network,
transparently for the applications.

An LH∗
RS operation is in normal mode as long as it does not encounter an

unavailable bucket. If it does, then it enters degraded mode. Below, we assume
the normal mode unless otherwise stated. We first present the storage and ad-
dressing of the data records. We introduce the parity management afterwards.

2.1 Data Records

The storage and addressing of data records in an LH∗
RS file is the same as in an

LH∗
LH file [Karlson et al. 1996]. We thus only briefly recall the related principles.

Details are in Karlson et al. [1996], as well as in Litwin et al. [1996], Bennour
et al. [2000], and Bennour [2002]. We follow up with the description of the LH∗

RS
specific rules for misdirected requests.

2.1.1 Storage. A data record structure consists of a key identifying it and
of other, non-key, data. Figure 2a, shows the record structure, with c denoting
the key and D the nonkey field, usually much longer than the key field. The key
determines the record location (the bucket number a) through the LH-function
[Litwin 1980]:

(LH) a := hi(c); if a < n then a := hi+1(c).

Here, hi stands for a family of hash functions with specific properties. Usually,
one uses hi = c mod 2i. The variables (i, n) are the file state, where i = 0, 1 . . .

stands for the file level and n = 0, 1 . . . is the split pointer. The state, hence the
LH-function itself, dynamically adjusts to the file size. The state determines
the number N of data buckets in the file as N = 2i + n. We call N file extent.
Vice versa, the extent determines the file state. For every N , 2i is the largest
power of 2 smaller or equal to N .

The initial file state is (0, 0) for the file extent N = 1. Every record then
hashes to bucket 0. LH∗ file adjusts to the scale-up by bucket splits. A low
ratio of overflows result from typically and good access performance. If the file
shrinks, buckets can merge, to prevent an underload. It appears that merges
are not used in practice for file systems. Therefore, we forego further discussion.

An LH∗
RS component called the coordinator manages the splits (and merges).

It may reside anywhere, but it should be practical to locate it at the node of
bucket 0.1 Both components however remain distinct: the unavailability of
bucket 0 does not imply that of the coordinator and vice versa. The coordi-
nator can be k-replicated for its own k-availability, having very little data on

1For LH∗, there are also variants without the coordinator [Litwin et al. 1996], but we are not aware
of attempts to make them highly available.
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its own, as will appear. When an insert causes an overflow, the bucket informs
the coordinator. The coordinator sends the split request to bucket n. It also ap-
pends to the file bucket N = 2i + n, allotted at some server, according to some
allocation scheme [Litwin et al. 1996]. Bucket n readdresses (rehashes) every
record in it using hi+1. A crucial property of LH-functions is that hi+1 only maps
each key to n or to 2i + n. The records mapped to n, half of those in the bucket
on the average, remain. The others move to a new bucket. Both buckets retain
the value i + 1 as the bucket level. The initial level of bucket 0 is zero.

Each split increases n to n + 1. The resulting (LH) calculus with the new
state conveniently takes the new bucket into account. The buckets split in this
way in numerical (linear) order, until all the buckets in the file reach the level
i + 1. This occurs when all the buckets 0 to 2i −1 have split using hi+1. The
coordinator then increases the file level to i := i +1 and moves the split pointer
back to n := 0. The splitting process uses the new hi+1 from then on.

The internal structure of an LH∗
RS data bucket is that of an LH∗

LH bucket.
Each bucket is basically a RAM LH file, as in Litwin [1980]. The internal buck-
ets called pages are the chains of records; the overflow records are those beyond
the b-th element. This result provides for efficient page splitting and fast lo-
cal access. Perhaps more surprisingly, it also accelerates the LH∗

RS splits, with
respect to their naı̈ve processing.

Example 1. Consider the LH∗
RS data buckets in Figure 1a. The split pointer

is n = 4, the file level is i = 3, the file extent is N = 12 = 23 + 4 buckets. The
header of each bucket shows its level j . We only show the key fields c, assumed
to be integers. The bucket capacity is b = 4. Bucket 4 has an overflow record.
Its insertions triggered one of the previous splits. Most likely, one of those using
h4 that processed the file up to bucket 3 until then. We now insert record 77.
According to (LH) it enters bucket 5. The bucket reports an overflow to the
coordinator. This overflow creates bucket N = 12, Figure 1b, and requests
bucket 4 to split. Bucket 4 has level j = 3, hence rehashes all its records using
h4. The new address for a record can be only either 4 or 12. The bucket keeps
every record hashed to 4. It sends every other record to bucket 12. In our case,
two records remain, while three move. Both buckets get level j = 4. Bucket
4 reports the end of the split to the coordinator, which finally moves the split
pointer n to n + 1 = 5. Now, bucket 4 no longer overflows, but even has room
for three more primary records. Likewise, there is room for two more inserts in
new bucket 12. The overflow at bucket 5 remains though, despite being at the
origin of the split. Its resolution waits for coming splits. In our case, the next
one is in fact at bucket 5 and will indeed resolve the overflow.

2.1.2 Addressing. As in LH∗ file, each LH∗
RS client caches its private image

of the file state, and applies (LH) to it. The coordinator would indeed become a
hot spot if the clients should access it for the addressing. The coordinator does
not push every file state update to the clients nor even to the servers, for the
same reason. A split therefore makes every existing image outdated. The initial
image of a new client is (0, 0). A client with an outdated image may direct a
key-based request towards an incorrect address, not the correct one given by
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(LH) for the request. The addressee recognizes its status from the received key
c and from its bucket level j . The correct address must indeed be equal to h j (c)
that is its own.

The incorrectly addressed bucket should forward the request to the bucket
that is possibly the correct one for c, and within the shortest extent N that could
exist in the situation. This guarantees that the hop does exceed any current
extent. The guess can be based solely on j and the bucket’s own address. Indeed,
only the coordinator knows n. The first guess must be bucket h j−1 (c). This
address must be under 2 j – 1, hence the guess is always safe, as the extent of
the file with at least one bucket of level j must be beyond that bound. If this
address is not that of the guessing bucket itself, then it cannot verify whether
the level of the addressee is actually j −1 or j . Hence, it has to resend the
request there. Otherwise, the guess does not lead to any actual forwarding. The
only remaining choice is h j (c). This must be the correct address. If the request
is resent to bucket h j−1(c), and the address also happens to be incorrect, then
the bucket level was indeed equal to j . The same calculus there resends then
the request to the correct bucket h j (c).

An incorrect bucket receiving the request from the client resends it according
to the above reasoning. It executes the resulting LH∗

RS Forwarding Algorithm
shown in App. C in Online Appendix C available in the ACM Digital Library.
The addressee may resend it once more, using the same algorithm. This must
be the last hop. In other words, any client’s request dealt with in this way must
reach its correct bucket in at most two hops. This property is independent of
the file extent. It is unique to LH∗ based schemes up to now, and comparatively,
among SDDSs, the most efficient known at present. Besides, the performance
analysis for LH∗ has shown that most of the key-based addressing requests in
fact do not encounter any forwarding in practice, for a reasonable large bucket
capacity b.2

The correct bucket sends an Image Adjustment Message (IAM) to the client.
It contains essentially the bucket level and the address of the latest resending
bucket.3 The client updates its image on this basis. It guesses the shortest file
extent and the related state that could lead to the data it got. The algorithm
avoids making the same addressing error twice. It also makes the client’s image
of the extent closer to the actual one. Numerically, App. C of Online Appendix C
available in the ACM Digital Library, if j is the received level, and A is the
address, the image evaluates to (i′ = j −1, n′ = A+1), unless n′ then turns out
to be 2i′ . The file state reevaluates then instead to (i′ = j , n′ = 0). The rationale
for the calculus is largely similar to that already outlined for the forwarding
calculus at the bucket.

The IAMs may also refresh the client’s image of the physical addresses of the
servers. Each IAM brings to the client the addresses of all the buckets stretching

2Incidentally, these properties nicely fit D. Knuth’s comments about amazing efficiency of random-
ized algorithms in Lecture 2 of Things a Computer Scientist Rarely Talks About, CSLI Publications,
Stanford, 2001.
3This choice is actually a novelty for LH∗ based schemes. Up to now they used the one in Litwin
et al. [1996]. The new approach improves the image adequacy in many cases.
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between the one initially addressed by the client and the correct one. A specific
IAM we describe later also refreshes the client when the recovery displaces a
bucket.

Example 2. In the file at Figure 1a, the key c = 60 is in bucket 4 according
to (LH). Now, a client with the file state image equal to (0, 0), hence with the
file extent image equal to N ′ = 1, searches for this key. The client sends the
request to bucket 0, according to its execution of (LH). Bucket 0 verifies whether
it could be the correct bucket for record 60. Its bucket level is 4, hence we have
h4(60) ̸= 0. The bucket is not the correct one, hence it needs to forward the
request. The bucket guesses the new address as h3(60) = 4. It is safely in
the existing file extent, as the file with bucket 0 of level 4 must have at least 9
buckets, while h3 may only address buckets 0. . . 7. The forwarding address does
not point to bucket 0 itself, hence the bucket forwards the request to bucket 4.
It includes in the message its own bucket level j = 4. The calculus at bucket
4 yields h3(60) = 4. Hence it is the correct bucket. It therefore responds to the
client with record 60 (if the request was a key search). It piggy-backs the IAM
containing the address 0 and the received level j = 4. The client updates the
file state image to (3, 1). This amounts to a new extent image of N ′ = 9. This
value is much closer to the actual one of N = 12 than the initial N ′ = 1. If
the client repeats the search, it sends the request directly to bucket 4, avoiding
the previous error. Moreover, initially any request from the client for any but the
two records in bucket 0 would require the forwarding. Now, only the requests
for the six records in buckets 9–11 would require it.

Consider now another client with image of N = 1 sending the request for
record 60 to the file at Figure 1b. Bucket 0 again forwards the request, and its
bucket level, to bucket 4. The calculus at bucket 4 now yields h4(60) = 12. The
request cannot be resent to bucket h3 (60) since it is bucket 4 itself. Hence the
bucket uses the guess of h4 (60) and resends the request, with its own bucket
level to bucket 12. This has to be the correct address. Bucket 12 handles the
request and sends the IAM that the level of bucket 4 is 4. The client’s new image
is (3, 5) hence it amount to the image N ′ = 13. It is the perfect guess. An access
to any record by our client now arrives directly at the correct bucket, until next
split.

2.1.3 Misdirected Requests. LH∗
RS restores an unavailable bucket on a

spare server. It is typically a different server than the one with the unavail-
able bucket. Only the client and the buckets involved in the recovery are aware
of the new location. Any other client or bucket can misdirect a request to the for-
mer server. A misdirected request could also follow a bucket merge. The LH∗

RS
file processes the misdirected requests basically as follows.

Any request to a data bucket carries the number of its intended bucket. A
node that a request reaches is supposed basically to be an SDDS server. Other
nodes are not supposed to react in any way. Like, ipso facto, an unavailable
server. The request without reply enters the degraded mode that we discuss
in Section 4. The server getting a request verifies that it carries the intended
bucket. If so, it acts as described above. Otherwise, it forwards the request to
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the coordinator. This one resends the request to the correct bucket. An IAM
informs the sender of the location change.

The scheme is valid provided that a misdirected request never finds the
bucket at a former location to be available despite its recovery elsewhere. If it
could happen, the client could unknowingly get data that is not up-to-date. The
assumptions for the LH∗

RS design that we now outline prevent this eventuality.
They are rooted in the popular fail-stop model and fit well the local network
environment we mainly target.

We thus presume that when a client or server finds a bucket unavailable, the
unavailability is permanent and of the entire bucket. Next, we suppose that
the communications are (fully) reliable. Finally, we presume that the server is
(definitively) unavailable when it does not react to the requests from the co-
ordinator. The basic recovery policy for LH∗

RS is furthermore that (i) only the
coordinator initiates a recovery, when a bucket does not react to the request
from, and that (ii) the first action of any server upon its local start-up or restart
is to report to the coordinator. The bucket then waits for the reply before pro-
viding any services, even if it finds its bucket intact.

Reliable communications and (i) prohibit any server from recovery while
available. This excludes one possibility of the “bad” case. Next, the server
restarting on its own could have its bucket already recovered by the coordinator,
in the meantime, or not, if its unavailability remained unspotted. The coordi-
nator systematically instructs any restarting server with the recovered bucket
to become a spare. This precludes the bad case as well. If the unavailability
remains unspotted, and the bucket is intact, the coordinator allows the bucket
to serve. Otherwise, it finally initiates the recovery. The restarting server may
eventually get the bucket back. Whatever the issue, the bad case cannot occur.

The scheme can be extended beyond the basic model, especially, to the case
of unreliable communications that could temporarily or partly isolate a data
bucket. The bucket could then become inaccessible to a client and the coordi-
nator, while other clients could possibly continue accessing it. The coordinator
would start the recovery that, if successful, could ultimately lead the clients
using the former location to get stale data. To prevent this from happening,
it suffices that any data server pings (scrubs) any of the parity buckets of its
group at an interval shorter than a minimal bucket recovery time. In practice,
as Section 5.7 shows, it should lead to a negligible overhead, for example, a
ping per little bit more than a second in our experiments. If the server does
not receive the reply, it alerts the coordinator, while possibly probing another
parity bucket.

As will appear, every parity bucket knows the valid location of all the data
buckets in its group, or knows about any recovery of a data bucket in progress
in its group. In response to the ping, the available parity bucket should thus
either confirm to the sender that it is still the available data bucket, or make
it aware of the recovery in progress. Accordingly, the bucket should process
any request coming afterwards, or during the ping, or should become a spare,
only forwarding the misdirected requests to the coordinator. Notice that if the
request is an insert, delete, or update, it must update all k parity buckets,
as will be seen. These would redirect any such request to the valid bucket,
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if a—necessarily unfinished—recovery had started since the latest ping. The
misdirected key search, processed by the (invalid) data bucket alone, as any
key search by any data bucket, cannot lead to an incorrect (stale) reply in this
case either. No update could yet perform at the valid bucket, at least till the
next ping.

2.2 Parity Records

The LH∗
RS parity records enable the application to get the values of data records

stored on any unavailable servers, up to k ≥ 1. We call k the availability level
and the file k-available. The actual level depends on the intended availability
level K ≥ 1 that is a file parameter. The K value adjusts dynamically to the file
size, (Section 2.2.3). Typically, k = K , sometimes k = K −1, after an increase
of K . We now present how LH∗

RS manages the parity records.

2.2.1 Record Grouping. LH∗
RS parity records belong to the specific struc-

ture, invisible to the application. It consists of bucket groups and record groups.
A bucket group contains m consecutive buckets with possibly fewer buckets in
the last group. Formally, bucket group g consists of all buckets a such that
⌊a/m⌋ = g . Here, m is a file parameter that is a power of 2. Bucket group 0
consists of buckets 0. . . m −1, bucket group 1 of buckets m . . . 2m −1, and so
forth. We limited our implementation to m ≤ 128, since larger choices look to
be of little use at present. Every data record in a bucket gets a unique rank
r = 1, 2 . . . . when it enters the bucket because of an insert, split, or merge.
Ranks are handed out basically successively, although the ranks of deleted
records can get reused. The up to m data records sharing the same rank r in a
bucket group g form a record group (g , r). Each record group has k ≥ 1 parity
records stored respectively at a different parity bucket P0, . . . Pk−1. The value
of k is the same for every record group in a bucket group and follows that of K
as we have mentioned, and describe in depth in Section 2.2.3.

2.2.2 Record Structure. Figure 2b shows the structure of a parity record.
Field r contains the rank and serves as the key. Field C encodes the record
group structure. It contains m placeholders c0, c1 . . . cm−1 for the keys of the data
records in the group. If the ith-bucket in the group contains a data record with
rank r and key c, then ci = c otherwise ci is null. All k parity records in a record
group share the value of r and of C. The final field is the parity field P , different
for each parity record of a group. We generate it by encoding the D-fields in the
record group using our Erasure Correcting Code (ECC) (Section 3). The ECC
enables decoding any unavailable (hence assumed erased) s ≤ kD-fields in the
group from any of s ≤ k parity records and the remaining m −sD-fields. We
can recover the unavailable s keys from the C-field of any parity record in the
group. These properties are our basis for the k-availability.

In Litwin and Schwarz [2000], the actual keys for C formed a variable length
list. The fixed structure above, proved more efficient [Ljungström 2000]. It typ-
ically needs slightly less storage. In addition, the position i of c in the C-field
directly identifies the data bucket with c as the ith in its bucket group. This
facilitates the search for data record c, that is needed with LH∗ addressing, for
image management at the parity bucket and possibly for forwarding.
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Fig. 3. LH∗
RS Record group structure with k = 2 parity buckets.

Example 3. We continue with our running example at Figure 1. We assume
now that the bucket group size is m = 4. The file at Figure 1b then has four
bucket groups {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}, and {12}. Figure 3 shows
the 2nd group that is group 1, with k = 2 parity buckets. These are named
P0 and P1. We only show the keys in the data buckets, the ranks and the C-
fields in the parity buckets. Notice that the latter are identical for both buckets,
but that the P -fields would differ. The hyphens symbolize the null values. The
header of a parity bucket only shows its bucket group number and the offset
of the bucket in the group. The figure shows that the record group with rank 1
consists of m data records 4, 61, 22, and 87. The group of rank 3 contains only
three records at present, in buckets 5, 6, 7. The next insert to bucket 3 will add
a new member to this group, and will update all the C and P fields. If bucket 6
is unavailable, the data records in buckets 4, 5, 7 together with any of the parity
buckets suffice to correct the erasure of the D fields in this bucket. The missing
keys are in the C fields at the offset i = 3. To access record 93, among those
necessary for the erasure correction calculus within its record group (1, 2), one
may directly address bucket 5. Since 93 = c1 in its C-field, we calculate 1∗4 +1.
A 2-unavailability involving buckets 6, 7, requires the use of data buckets 4, 5
and of both parity buckets. A 3-unavailability is unrecoverable (catastrophic)
here. We need at least k = 3 parity buckets to keep away from such bad luck.

2.2.3 Scalable Availability. The cost of storing and manipulating parity
records increases with k. The storage overhead is at least k/m. We also need
access to all the k parity records whenever we insert, update, or delete a data
record. A multiple unavailability becomes more likely in a larger file, hence the
probability of the catastrophic case for any given k rises as well, [Hellerstein
et al. 1994]. In response, the LH∗

RS scheme provides scalable availability [Litwin
et al. 1998]. At certain file sizes, the current availability levels increase by one
for every group.

In more detail, we maintain a file parameter called the intended availability
level K. Initially, K = 1. The coordinator increases K by 1, at the first split
making the file extent N exceed some NK data buckets, K ≥ 2. Each NK
should be a power of 2 and a multiple of m. The former requirement makes K
change only for the split of bucket 0. One choice for the latter requirement is
NK = N K

1 , with N1 = m [Litwin et al. 1998].
Consider now that the coordinator is at the point of increasing K since the

file undergoes the split of bucket 0 making N exceed some NK . At this moment,
all bucket groups still contain k = K −1 parity buckets. Now, whenever the
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first bucket in a bucket group splits, its group gets one more parity bucket, the
K -th one. From now on, every new split within the group updates this bucket
as well. If the freshly appended bucket initiates a new group, then it gets K
parity buckets from the start. Until the file reaches N = 2NK buckets, we thus
have in the file some groups that are K -available while others are still (K −1)-
available. The file is still (K −1)-available. Only when N reaches 2NK will all
the groups have K buckets, which makes the (entire) file K -available.

There is a subtle consequence for the transitional group that contains the
current bucket n beyond its first bucket. Not all the buckets of the transitional
group have yet split using hi+1. Its K -th parity bucket therefore only encodes
the data buckets in the group up to bucket n-1. LH∗

RS recovery cannot use it in
conjunction with the data buckets in the group that have not yet split. The group
remains (K −1)-available despite K parity buckets. It reaches K -availability
when the last bucket splits.

Example 4. We continue with m = 4. The file creation with K = 1 leads to
data bucket 0 and one parity bucket for group 0, with buckets 0. . . 3 as m = 4.
The split creating bucket 4 initializes the first parity bucket for group 1, named
P0 in Figure 3 and Figure 5, and formally named P0. Until the file reaches
N = 16, every group has one parity bucket (P0), and the file is 1-available.
The creation of bucket 16, by the split of bucket 0, appends P1 to group 0, and
provides group 4 initiated by bucket 16, with P0 and P1 from the start. Group 0
remains transitional and 1-available, despite its two parity buckets. This lasts
until bucket 3 splits. The new group 4 is however immediately 2-available.

Next, the eventual split of bucket 4 appends P2 to group 1, and starts group 5.
Group 1 is transitional in turn. When bucket 15 splits, hence n returns to 0 and
the file reaches N = 32 buckets, all the groups are 2-available. They remain so
until the file reaches N3 = 64 buckets. The next split, of bucket 0 necessarily,
increases K to 3, adds P3 to group 0, makes the group transitional again, and so
on. The file reaches 3-availability when it attains 128 data buckets. And so on.

3. PARITY CALCULUS

3.1 Overview

We first defined the parity calculus for LH∗
RS in Litwin and Schwarz [2000] for

our Erasure Correcting Code (ECC) derived from a classical Reed-Solomon code
[MacWilliams and Sloane 1997]. We recall that an ECC encodes a vector a of m
data symbols into a code word of m + k + k′ code symbols such that any m + k′

of the code symbols suffices to recalculate a. Our ECC was Maximum Distance
Separable (MDS). Hence k′ = 0 and m code symbols suffice to recalculate a.
This is the theoretical minimum, so we minimize parity storage overhead for
any availability level k within a record group. Next, our ECC was systematic.
Thus, our encoding concatenates a vector b of k parity symbols to a to form the
code word (a|b). Finally, our code was linear. Thus, we calculate b as b = a · P
with a parity matrix P.

Our initial proposal was theoretical. Since then, we worked on the imple-
mentation. Our primary goal was fast processing of changes to data buckets.
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The result was an improved ECC that we introduce now. We changed from
symbols in the Galois field GF(24) to GF(28) or GF(216). We based our latest
prototype [Litwin et al. 2004a, b], on the latter as measurements favored it. We
also refined the parity matrix P. Our new P has a row and a column of ones.
As a consequence of the latter, updating parity bucket P0 involves only bit-wise
XOR operations. In addition, the recovery of a single data bucket involves only
the XOR operations as well. Our EEC calculus is thus in this case as simple
and fast as that of the popular 1-available RAID schemes. The 1-unavailability
is likely to be the most frequent case for our prospective applications. When we
need to go beyond, the row of ones makes inserting, deleting, or updating the
first data record in a record group, involve only XOR-operations at all parity
records. Creation and maintenance of all other parity records involves symbol-
wise GF-multiplication. It is mathematically impossible to find a parity matrix
for an MDS code with more ones in it, so that our code is optimal in that regard.
Our parity matrix is new for ECC theory, to the best of our knowledge.

We continue to implement our GF-multiplication using logarithms and an-
tilogarithms [MacWilliams and Sloane 1997, Ch. 3, §4]. We take further advan-
tage of this approach by directly applying to the parity (P -fields) generation,
the logarithms of the entries in P, instead of the entries themselves. The lat-
ter is the usual practice and we did so ourselves previously. The result speeds
up the calculus, as we will show. Finally, we introduce the concept of a generic
parity matrix. This matrix contains parity matrices P for a variety of numbers
m of data records, and k of parity records.

We now describe our present calculus in more depth. We only sketch as-
pects that our earlier publications already covered. See in particular Litwin
et al. [2004b] for more details. We also give some details in Online Appendix C
available in the ACM Digital Library.

3.2 Generic Parity Matrix

Our symbols are the 2 f bit strings of length f , f = 8, 16. We treat them as
elements of GF(2 f ). The generic parity matrix Pgen is the 2 f −1 by 2 f −1 + 1
matrix of the form:

Pgen =

⎛

⎜⎜⎜⎜⎝

1 1 · · · 1
1 p1,1 · · · p1,2 f −1

...
...

. . .
...

1 p2 f −1−1,1 · · · p2 f −1−1,2 f −1

⎞

⎟⎟⎟⎟⎠
. (3.1)

With this choice of size, Pgen can accommodate a maximum of 2 f −1 data
records and 2 f −1 + 1 parity records in a group. We could have chosen other
maxima within the bounds of a total of 2 f +1 data and parity records in a group.
We now sketch how to obtain Pgen. We start with an extended Vandermonde
matrix V with r = 2 f −1 rows and n = 2 f + 1 columns over GF(2 f ). This is
a matrix of largest known size so that any r by r sub-matrix is invertible.
Elementary row transformations and multiplication of a column by a scalar
preserve this property. We use them to transform V into a matrix W of the
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form (I |∗), a matrix whose left half is an identity matrix. We now multiply
all rows j of W with w−1

r, j . Column r now only contains ones. However, the left
r columns are no longer the identity matrix. Hence we multiply all columns
j ∈ {0, . . . r −1} with wr, j to recoup the identity matrix in these columns. Next,
we multiply all columns r, . . . , n with the inverse of the coefficient in the first
row. The resulting matrix now also has 1-entries in the first row. This is our
generic generator matrix Ggen. Matrix Pgen is its right half.

Ggen =

⎛

⎜⎜⎜⎜⎝

1 0 · · · 0 1 1 · · · 1
0 1 · · · 0 1 p1,1 · · · p1,r

...
...

. . .
...

... · · ·
...

...
0 0 · · · 1 1 pr−1,1 · · · pr−1,r

⎞

⎟⎟⎟⎟⎠
. (3.2)

Appendix A shows our actual generic parity matrices for GF (28) and GF (216).
The Lemma in App. C in Online Appendix C available in the ACM Digital
Library shows that any parity matrix obtained as the upper left corner of our
generic parity matrix defines a systematic, linear, MDS ECC.

3.3 Parity Generation

We recall that the addition in a GF with 2 f elements is the bit-wise XOR oper-
ation. Also, among several methods for the multiplication, the popular method
of logarithms and antilogarithms [MacWilliams and Sloane 1997] is especially
convenient for our purpose. Given a primitive element α ∈ GF(2 f ), we mul-
tiply two non-zero GF elements β and γ as β · γ = antilogα (logα(β) + logα

(γ )). We tabulate the logarithms and antilogarithms. There are 2 f −1 entries
in the logarithm table (one for each non-zero element) and twice as many in
the antilogarithm table, one for each possible sum. By adding the logarithms
modulo 2 f −1, we could use a smaller antilogarithm table at the cost of speed.
See App. C in Online Appendix C available in the ACM Digital Library for more
details of our use of GF arithmetic, including the pseudo-codes. Table 5 there
shows the logarithms based on α = 2 we actually use for GF (28).

We organize the nonkey fields of the m data records in a record group as
the columns in an l by m matrix A = (ai, j ), 0 ≤ i < l , 0 ≤ j < m. Similarly,
we number the parity records in the group from 0 to k −1 and arrange their
P-fields as the columns in an l by k matrix B = (bi, j ), 0 ≤ i < l , 0 ≤ j < k.
Parity matrix P is the upper left m by k corner of Pgen. We define B by B = A ·P.
Equivalently, we have:

bi, j =
m−1
⊕

ν=0
ai,ν pν, j . (3.3)

Formula (3.3) defines the P -field of the parity records for a record group. We
calculate this field operationally when we change a data record in the record
group. This happens when an application inserts, deletes, or modifies a data
record, or when a split or merge occurs. We implemented the latter as bulk
inserts and deletes. For the parity calculus, inserts and deletions are special
cases of updates. A missing data record has a nonkey field consisting of zeroes.
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P =

⎛

⎜⎜⎜⎝

1 1 1
1 1a 1c
1 3b 37
1 ff fd

⎞

⎟⎟⎟⎠
Q =

⎛

⎜⎜⎜⎝

0 0 0
0 105 200
0 120 185
0 175 80

⎞

⎟⎟⎟⎠

Fig. 4. P and Q for 3-available record group of size four data record.

An insert changes this field from the zero string and a delete changes it to the
zero string.

We now explain an update to data record j in a record group. Let (aold
i, j )0≤i< l

be the nonkey field of the record before, and (anew
i, j )0≤i< l the one after, the update.

The delta field (%-field) is % j = (δi, j )0≤i< l = (anew
i, j ⊕ aold

i, j )0≤i< l . It is the bit-wise
XOR of the before and the after images of the nonkey field. For an insert or
a delete, the %-field is thus simply the actual nonkey field. As in Litwin and
Schwarz [2000], we calculate the P-field of parity record s as:

bnew
i,s = bold

i,s ⊕ δi,s · pj ,s. (3.4)

Parity bucket s only uses column s of P. However, we do not use the parity
matrix P directly. Rather, we store the logarithms qj ,s= logα(pj ,s) of the entries
of P in a logarithmic parity matrix Q and use the formula

bnew
i,s = bold

i,s ⊕ antilogα(logα(δi,s) + qj ,s) (3.5)

where the plus sign is the integer addition and the ⊕ the bitwise XOR operation.
Our use of Q avoids half the look-ups to the logarithm table. Parity bucket s
only needs the first m coefficients from column s of Q, and only these are stored
there. Parity bucket 0 does not need to store anything, since it simply updates
according to

bnew
i,s = bold

i,s ⊕ δi,s. (3.6)

Appendix A shows our actual matrices Q for GF (28) and GF (216). At the
implementation level, a data bucket calculates the %-field for each update and
sends it together with the rank to each parity bucket. Each parity bucket then
updates the P -field of the parity record in the record group given by the rank
according to (3.5), or to (3.6) if it is the first parity bucket.

Example 5. We use 1B symbols as elements of GF (28) and write them as
hexadecimal numbers. We continue with m = 4 and we choose k = 3. We cut the
parity matrix P and a logarithmic parity matrix Q in Figure 4 from our generic
parity matrix in Appendix A. We number the data buckets in a bucket group
D0. . . D3 and consider three parity buckets, Figure 5. We have one data record
per bucket. The record in D0 has the D-field: “En arche en o logos . . . ”. The other
D-fields are “In the beginning was the word . . . ” in D1, “Au commencement était
le mot . . . ” in D2, and “Am Anfang war das Wort. . . ” in D3. Assuming the ASCII
coding, D-fields translate to (hex) GF symbols in Figure 5c, for example, “45 6e
20 61 72 63 68 . . . ” for the record in D0. We obtain the parity symbols in P0
from the vector a0 = (45, 49, 41, 41) multiplied by P. The result b0 = a0 · P is
(c, d2, d0). We calculate the first symbol of b0 simply as 45 ⊕ 49 ⊕ 41 ⊕ 41 = c.
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Fig. 5. Example of Parity Updating Calculus.

This is the conventional parity, as in a RAID. The second symbol of b0 is 45
·1 ⊕ 49 · 1a ⊕ 41 · 3b⊕ 41· ff and so on. Notice that we need no multiplication to
calculate the first addend.

We now insert these records one by one. Figure 5a shows the result of in-
serting the first record into D0. The record is in fact replicated at all parity
buckets, since updates to the first bucket translate to XOR operations at the
parity buckets, and there are not yet the other data records. Inserting the sec-
ond record into D1 at Figure 5b still leads to an XOR operation only at P0, but
involves GF-multiplications using the respective P columns at the other parity
buckets. Notice that, in the latter case, we operationally use Q columns only.
Figure 5c shows the insert of the last two records. Finally, Figure 5d shows the
result of changing the first record to “In the beginning was . . . ”. Operationally,
we first calculate the %-field at D0: (45 ⊕ 49, 6e ⊕ 6e, 20 ⊕ 20, 61 ⊕ 74, . . .) =
(c, 0, 0, 15, . . .) and then forward it to all the parity buckets. Since this is an
update to the first data bucket, we update the P-fields of all parity records by
only XORing the %-field to the current contents.

3.4 Erasure Correction

Our ECC calculates a code word (a | b) as (a | b) = a · G with a generator matrix
G = (I | P) [MacWilliams and Sloane 1997, Ch. 1, §2], obtained by the concate-
nation of the m by m identity matrix I and the parity matrix P. We recall that
we organized the non-key fields of the data records in an l by m matrix A and
similarly the P-fields of the parity records in a matrix B = A · P. Assume that
we have m columns of (A | B) left, corresponding to m surviving records. We col-
lect the corresponding columns of G in an m by m submatrix H. Here, the data
buckets implicitly correspond to columns in the identity matrix. The columns
of P are reconstructed as the coordinate-wise antilogarithms of the columns in
Q at the parity buckets. We form an l by m matrix S containing the m available
data and parity records. We have A · H = S. Hence A = S · H−1 and we recover all
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H =

⎛

⎜⎜⎜⎝

0 1 1 1
0 1 1a 1c
0 1 3b 37
1 1 ff fd

⎞

⎟⎟⎟⎠
H−1=

⎛

⎜⎜⎜⎝

1 a7 a7 1
46 7a 3d 0
91 c8 59 0
d6 b2 64 0

⎞

⎟⎟⎟⎠

Fig. 6. Matrices for correcting erasure of buckets D0, D1, D2.

data records with one single matrix inversion (in our experiments, the classical
Gaussian inversion appeared to be the fastest, and we actually use log2(H−1) to
speed up the multiplication). If there are unavailable parity records, we recover
the data records first, and then regenerate the erased P -fields by calculating
B = A · P for the lacking columns of B.

Alternatively, we can decode all the erased data and parity values in a single
pass. We form the recovery matrix R = H−1 · G. SinceS = A · H, we have A =
S· H−1, hence (A | B) = A · G = S · H−1· G = S · R. We apply, however, only the
first approach up to now. Computing R is longer, while we expect primarily the
recovery of the data bucket only.

Example 6. Assume that the data buckets D0, D1, and D2 in Figure 5 are
unavailable. Assume that we want to read our record in D0. We collect the
columns of G corresponding to the available buckets D3, P0, P1, and P2 in
Figure 5 in matrix H, Figure 6. We invert H. The last column of H−1 is a unit
vector since the fourth data record is among the available ones. To reconstruct
the first symbols simultaneously in each data bucket, we form a vector s from
the first symbols in the available records of D3, P0, P1, and P2: s = (44, 5, fa, f2).
This vector is the first row of S. To recover the first symbol in D0, we multiply s
by the first column of H−1 and obtain 49 = 1∗44 + 46∗5 + 91∗FA + d6∗f2. Notice
again that we actually use the matrix log2(H−1). We iterate over the other rows
of S to obtain the other symbols in D0. If we were to read our record in D1, we
would use S with the second column of H−1.

4. LH∗
RS FILE MANIPULATION

An application manipulates an LH∗
RS file as an LH∗ file. The coordinator man-

ages high-availability invisibly to the application. We assume that the coor-
dinator can diagnose any bucket unavailability by probing through reliable
communications. Available buckets respond to the probing as expected, by def-
inition. Internally, each manipulation starts in normal mode. It remains so as
long as it does not run into an unavailable bucket. That one does not respond
at all (our basic case), or more generally does not behave as it should. A ma-
nipulation that encounters an unavailable bucket enters degraded mode. The
node handling the manipulation forwards it to the coordinator. The coordina-
tor initiates the bucket recovery, unless it is already in progress. It considers
the bucket content erased and calls upon our erasure correction calculus. The
recovery simultaneously restores all unavailable buckets found in the group
when the operation starts, up to k, as we discussed. More than k unavailable
buckets make the unavailability catastrophic.

For a key search of a record in an unavailable bucket, the coordinator also
starts the record recovery. This operation recovers only the record, or finds its
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key not to be in the file. It should usually be much faster than waiting for the
bucket recovery to complete, which also recovers the record. Once the bucket
recovery, or only the record recovery for the key search, has terminated, the
coordinator completes the original manipulation and returns the result and
the control to the requestor.

We first present the recovery operations. Next, we describe the record insert,
update and bucket split operations. We focus on the parity coding, as Section 2
already largely covered the related data record manipulations. We have left
the description of file creation and removal, of key search, and of nonkey search
(scan) to Online Appendix C available in the ACM Digital Library, App. C. These
manipulations do not involve parity coding and perform almost as for LH∗,
except for the degraded mode. Likewise, we relegate the deletion and bucket
merge to Online Appendix C available in the ACM Digital Library. Deletions
are rare (except those internal to the split operation we describe in Section 4.5),
while merges are hardly ever implemented.

4.1 Bucket Recovery

The coordinator starts the bucket recovery by probing the m data and k parity
buckets of the bucket group for availability. We usually have k = K , or we have
k = K −1 if the group is not aware yet of the current K , or is the transitional
one. The probing should localize m available buckets, excluding the last parity
bucket in a transitional group. The unavailability is catastrophic otherwise.
The coordinator reports the gloomy fact to the client, for the application, and
stops the processing. It may still be possible to recover some records, but this
is beyond the basic scheme.

The probing also localizes the unavailable buckets that should be therefore
k at most, including the originally reported bucket, and without the last bucket
of the transitional group.4 If k > 1, then prior to the erasure correction, the
coordinator may need to verify whether all the available parity buckets pro-
cessed the last %-record or even simply received it. It may not be the case, as
we show in Section 4.3 and Section 4.4. If %-record could update some, but not
all, parity buckets, the erasure correction result could be gibberish, corrupting
the data. The coordinator first terminates the updates at those parity buckets
that have updates pending. Next, the coordinator establishes the list LA of m
available buckets. LA possibly includes bucket P0. The coordinator establishes
also the list LS of tuples: (unavailable bucket, replacing spare). The coordinator
chooses one spare as the recovery manager. It passes the task to it. If there is
any parity bucket in LS, it also passes its Q column. The handover prevents
the coordinator from becoming a hot spot.

The manager first creates the empty, structure of the bucket to recover at
each spare. Next, if there is only one unavailable (data) bucket, and P0 ∈ LA,
then the manager applies the XOR-only erasure correction. Otherwise, it cre-
ates matrix H using the columns of Q at the parity buckets in LA. If the bucket

4In the basic scheme, we exclude the case of the probing finding a bucket reported to be unavailable
to be nevertheless available, because for example only the reporting client had problems commu-
nicating with the bucket.
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group is the last one, and some data buckets have not yet been created, then
the calculus considers these bucketsas virtual ones with records having zero
D-fields. In both cases, the manager then calculates the matrix log2(H−1), using
the primitive element α = 2 and the Gaussian inversion to produce H−1, as we
said in Section 3.4. Next, it starts looping over all the parity records in a parity
bucket in LA. It requests the successive records, and for each record received,
it performs the record group recovery, producing all the unavailable records of
one group.

Record group recovery explores the C-fields, Figure 2a. For every key ci ∈ C,
it requests the data record ci from the ith bucket in the group, provided it is
in LA. The manager decodes the (erased) D-fields of unavailable data records
in the group. It uses the XOR-only or log2(H−1). It also reconstructs the keys
from C. If there are also unavailable parity buckets in LS, then the manager
generates their records from the m data records. The procedure varies slightly
for the last parity bucket in a transitional group. The recovery of this bucket
uses only the data buckets among the m up to bucket n (nonincluded). Finally,
the manager sends the recovered records to the spares.

Once the bucket group recovery ends, the manager sends the addresses of
the recovered buckets to the remaining buckets in the group. These update
the location tables. The manager finally returns control to the coordinator. The
coordinator updates its server addresses as well. Clients and servers get the
new addresses when they misdirect the requests.

It is perhaps worth recalling furthermore that the erasure correction used
for each record group recovery could reconstruct the data and parity buckets
simultaneously, except for the last bucket of the transitional group. It could use
the alternate erasure correction calculus discussed in Section 3.4. The unavail-
ability involving only the data buckets may be expected however, to be more
frequent than that of both types together. Our current erasure correction is
then faster.

While the bucket group recovery loops over the individual record recovery, the
actual records sent among the data buckets, the parity buckets, and the spare,
move in bulk. At present, we use the TCP/IP in passive mode, Section 5.1. This
turns out to be far more effective than our previous choice of UDP with a record
per datagram.

4.2 Record Recovery

A record recovery results from a key search in an unavailable correct bucket a.
It decodes only the requested record or finds that the key is not in the file. This
suffices for completing the search and should be typically much faster than
delaying the key search until the sufficient completion of the bucket recovery,
(Section 5.7 and Section 5.8). The coordinator starts the record recovery in par-
allel to a bucket recovery, provided the unavailability is recoverable, of course.
It hands control to the record recovery manager at an available parity bucket
in the group. It transmits c, a, LA. The manager first searches the C-fields in
the bucket for the existence of a parity record with rank r and the searched key
c in C(r). Since one cannot infer r from c, it basically scans the bucket. It visits
in each record only the C-field value at the offset of the unavailable bucket in
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the group. An index at the parity bucket, giving the ranks of the keys in the
C-fields, could obviously avoid the scan, at the cost of additional storage and
processing. Such an index is not part of the basic scheme.

If the manager does not find the parity record, it informs the coordinator that
the search is unsuccessful. Otherwise, the recovery manager uses the erasure
correction on the record group r to recover the searched D-field. As already
discussed, the calculus uses possibly XOR only, or H−1 otherwise. Unlike for the
record group recovery within the bucket recovery, the record recovery manager
restores only the requested record, even if there are more unavailable data
records in the group. Finally, it sends the record to the coordinator that forwards
it to the client.

4.3 Insert

In normal mode, an LH∗
RS client performs an insert like an LH∗ client. The

client then addresses the insert to the bucket determined by the data record
key c and the client’s image. It keeps the copy of the record and waits for an
acknowledgement. If it does not come within a timeout, the client sends the
insert to the coordinator. The operation enters the degraded mode. We have
already presented the bucket recovery that it starts. Later in this section we
address the aspects of the degraded mode specific to the insert. The client waits
for the final acknowledgment to discard its copy of the record. The policy for its
acknowledgements to the application is implementation dependent and is not
within our basic scheme. Our prototype uses its flow control algorithm.

The bucket receiving the request eventually forwards it as described before.
Once the correct data bucket receives the insert, it stores the record as for an
LH∗ file. If the data bucket overflows, the bucket informs the coordinator. In
addition, it assigns a rank r to the record. Next, it sends the %-record (with
key) c and r to the k parity buckets. Recall that the %-field is the D-field of
the inserted record. The data bucket then commits (acknowledges) the insert
to the client and waits, internally, for the k acknowledgements from all parity
buckets. The client discards its copy of the record.

The policy provides the k-availability under reliable messaging and our other
basic assumptions, provided that all the available parity buckets perform the
required update, as detailed below. The data bucket will report any unavailabil-
ity and will still have the %-record. If the probing during the recovery finds any
l ≤ k parity buckets available, all l will be updated with the %-record. If the
probing also shows at most l data buckets unavailable, then our basic erasure
correction calculus first recovers all of them and next the unavailable parity
buckets. This, even if the probing finds even the original data bucket among
the unavailable ones, as it could become unavailable in the meantime.

To update its content upon the message from the data bucket, each parity
bucket creates the parity record r, if it does not exist already, and inserts c into
C-field. It also encodes the %-field of %-record c through the update of P -field of
record r. It first conceptually multiplies the %-field symbol-wise with the correct
coefficient of matrix P. The actual calculus does not use the multiplication for
the first column as it has 1’s only, and uses the symbols in Q for k > 1. It either
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XORs the result to the P -field already in record r, or stores it as the new P -field
of new record r.

If k = 1, the send-out of the %-record amounts in our scheme to 1PC. That
is, the parity bucket creates or updates the parity record r, acknowledges the
operation, and does not keep any other traces of it. The data bucket also erases
any traces after the acknowledgement to the client. That one does the same,
perhaps after forwarding the acknowledgement to the application in turn. The
server or the client enters the degraded mode when any of the expected mes-
sages does not arrive in time.

The approach does not suffice in contrast to provide k-availability for k > 1.
For instance, assume that k = 2, and that both the data bucket and the client
become unavailable, while the data bucket is sending the messages to the parity
buckets. The unavailability of the data bucket can then be discovered only later
on. It may then happen that the bucket could send the message only to one of
the parity buckets that performed the creation/update of record r consequently.
Consider that the probing finds yet another data bucket unavailable. The era-
sure correction calculus obviously cannot recover the group anymore, leading
to data corruption in the case of such an attempt. This includes the inserted
record itself that, besides, is nowhere around anymore. In any case, the group,
hence the file, is not k-available anymore, despite the k parity buckets in the
group. Notice that for an update, the case could occur even if the data bucket
only became unavailable during the send-out. Unlike for an insert or delete,
the C-field of a parity bucket does not suffice anymore to know whether it dealt
with the %-record or not.

The general rule for k > 1 that follows from this, is that a change, whether
insert, update or delete, should commit at all or none of the parity buckets.
Our basic scheme uses the following simple variant of 2PC for any of these
operations. The data bucket sends the %-record c and its r to all k parity buckets.
It does it in the order of the column index in P: p0, p1 . . . pk . Each parity bucket
starts the commit process by acknowledging the reception of the message. The
confirmation constitutes the “ready-to-commit” message. Each parity bucket
encodes the record as usual, into parity record r. But it retains the %-record
in a differential file (buffer) for a possible rollback. If the data bucket gets
all k “ready-to-commit” messages, it sends out the “commit” message to the k
buckets, in the same order. Each bucket that receives the message discards the
%-record. All available buckets should receive it under our general assumptions.

Degraded mode starts when any of the buckets involved cannot get a re-
sponse it expects. The operation at the data bucket enters degraded mode if it
lacks any of the acknowledgments from the parity buckets. It alerts the coor-
dinator, transmitting the %-record, r, and as usual the number p, of the un-
available parity bucket. Within the bucket recovery process as described above,
the coordinator requests each available bucket to complete the update from the
differential file, or by using the %-record it sends out otherwise. The recovery
process then proceeds further as already presented.

Another degraded case occurs when parity bucket pl does not receive a mes-
sage from the data bucket. The data bucket must have then just failed and
bucket pl must be in the “Ready-to-Commit” state and must still have the
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%-record. It alerts the coordinator, sending out the %-record, and r. The coordi-
nator probes the parity buckets in the above order. Any bucket up to pl either
has committed or still has the %-record. Any other bucket either still has the
%-record or did not get it at all. The coordinator sends the %-record where
needed and requests the update at all the available parity buckets accordingly.
Again, the recovery process continues as already presented.

Next, the client lacking the acknowledgement from the data bucket reports
it as unavailable. The client also acknowledges the operation to the application,
to avoid further waiting. The coordinator performs the delivery to the correct
bucket if the unavailable one wasn’t. This may generate a split processed as
usual. The coordinator may also find that the correct bucket it found on its
own is unavailable as well. This may trigger a separate recovery if the bucket
is in a different bucket group than the one reported by the client. Next, the
coordinator determines the availability of buckets in the group, and verifies
the synchronization of the parity buckets, as just described. It may find that
the data bucket never sent any messages to parity buckets. Alternatively, it may
also find an alert from a parity bucket about the data bucket’s unavailability. It
may further find some parity buckets still waiting for the commit from the data
bucket and some perhaps without any message. In all cases, the coordinator
can determine the state of each available parity bucket and synchronize all of
them as above. Afterwards the recovery proceeds as described.

Finally, as we said, it may happen that the client and the data bucket become
simultaneously unavailable during the insert. If the update was in progress, an
available parity bucket would alert the coordinator as described. Alternatively,
it may only be that no (available) parity bucket has received the %-record or
all have nicely committed. Only a later application operation will discover the
data bucket unavailability. It will be accordingly recovered with or without the
inserted record.

An insert in a degraded mode to the unavailable correct data bucket may
generate an overflow at the recovered bucket. The new bucket itself alerts the
coordinator to perform a split. On the other hand, observe that one can optimize
the 2PC to use multicast messaging to the parity buckets for inserts and deletes.
It is due to the possibility of recovery synchronization using the C-fields.

Finally, notice that, while our 2 PC is a sure solution for k-availability and
1 PC cannot be, the event of a data bucket becoming unavailable during the
messaging to the parity buckets is very unlikely. Section 5.4 shows this time
to be under a millisecond. The bad case of both the client and the data bucket
becoming unavailable during that time is obviously even much more remote. An
application may be reasonably tempted to use 1PC anyhow, for its simplicity and
necessarily better performance. After all, every application already disregards
scores of potential, but fortunately very unlikely, causes of data unavailability.

4.4 Update

An update operation of record c changes its nonkey field. In the normal mode,
the client performs the update as in LH∗. As for an insert, it waits for an ac-
knowledgement. The client sends the received record with its key c and the new
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value of the D-field. The data bucket uses c to look up the record, determines
its rank r, calculates the %-record, and sends both to all k parity buckets. These
recalculate the parity records. Finally, the data bucket commits the operation.

As for inserts and deletes, 1PC suffices only for k = 1. To be on the safe side
for k > 1, the updates also basically use the 2PC above. It clearly suffices for
this operation as well.

4.5 Split

As in LH∗, if an insert to an LH∗
RS data bucket a results in an overflow, then

the bucket a notifies the coordinator. The coordinator starts the split operation
of bucket n, determined by the split pointer. We recall that this operation is
invisible to the application. Typically, we have n ̸= a. In the normal mode, the
coordinator first locates an available server and allocates there the new data
bucket N , where N denotes the number of data buckets in the file before the
split. Bucket N is usually in a bucket group different from that of bucket n,
unless the file is small and N < m. If N is the first bucket in the group, then the
coordinator allocates K empty parity buckets. If K > k for the bucket group
with bucket n, then the coordinator allocates the additional K th parity bucket.
Provided all this performs normally, the coordinator sends the split message
to bucket n with all the addresses. This hands control of the split to bucket n.
The coordinator nevertheless waits for the commit message. The bucket sends
all the data records that change address when rehashed using h j+1 to data
bucket N . Our implementation sends these records in bulk.

For each data record that moves, bucket n finds its rank r, produces a %-
record that is actually identical to the record itself, and requests its deletion
from the parity records r in all the k buckets of its group. It also assigns new
successive ranks r ′ starting from r ′ = 1 to the remaining data records. Bucket n
then sends both ranks with each %-record to the K parity buckets. Each existing
bucket, deletes %-record from parity record r and inserts into parity record r ′.
The new K th parity bucket, if there is one, disregards the deletes.

When data bucket N receives the data records, it requests the insert into its
K parity buckets with the successive ranks it assigns. Once it terminates, it
reports to bucket n that in turn reports to the coordinator.

The operations on the parity buckets use 1PC for K = 1 and the already
presented 2PC otherwise. Degraded mode starts when a data or a parity bucket
does not reply. We skip the discussion of this mode here, as various cases are
similar to those already discussed. Once the split terminates, the coordinator
adjusts the file state as in Section 2.1.1.

5. PERFORMANCE ANALYSIS

We have analyzed storage, communication, and processing performance of the
scheme. We have derived formulae for the load factor, parity storage overhead,
and messaging costs. We limited the derivation to the dominant cost factors.
This makes the calculus easy enough, but still quite lengthy. This analysis is
in Online Appendix C available in the ACM Digital Library App. C.

The results show that the high availability of an LH∗
RS file incurs about the

smallest possible storage overhead. More precisely, for any intended availability
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level K , and of group size m, the load factor of the growing LH∗
RS file should be in

practice about constant, and the highest possible for these values, as well as for
any technique added to an LH∗ file to make it K -available. Through motivating
examples in Online Appendix C available in the ACM Digital Library, we show
some practical design choices.

A user is mainly interested in the response time of various operations. The
complexity of any practical implementation of LH∗

RS seems to prevent a practi-
cally useful formal analysis of such times. We have preferred the experimental
analysis of various implementations. We now present the results. They com-
plete the picture of the efficiency of our scheme and they validate the various
design choices that we presented above.

5.1 Prototyping LH∗
RS

We have implemented LH∗
RS to measure various operations and prove the via-

bility of the scheme. The work took many years of effort. The earliest prototype
is presented in Ljungström [2000]. It implemented the parity calculus defined
in Litwin and Schwarz [2000]. It also reused an LH∗

LH implementation for the
data bucket management [Bennour 2002]. Experiments with the next version
of the LH∗

RS prototype are in Moussa and Litwin [2002]. The current version
used for the experiments below builds upon that one. We present the prototype
in greater detail in Litwin et al. [2004a, b], as we have shown it to the public at
VLDB-04. Further details, as well as the deeper discussion of the experiments
discussed below, are in Moussa and Litwin [2002].

The prototype consists of the LH∗
RS client and server nodes. These are C++

programs running under the Windows 2000 Server. Internally, each client and
server processes queries and data using threads. The threads communicate
through queues and other data structures and synchronize on events. We
mainly use two kinds of threads. The listening threads manage the commu-
nications at each node. There is one thread for UDP, one for TCP/IP and one
for multicast messaging. The working threads (currently four) simultaneously
process queries and data, whether received or sent out.

The communication uses the standard UDP and TCP/IP protocols. Clients
communicate with servers through UDP, except when the data records are
larger than a datagram could be (64 KB). A listening thread timely unloads the
UDP buffers to prevent loosing a datagram. There is also a flow control mecha-
nism. The servers communicate using TCP/IP for data transmission during the
bucket split or recovery, and UDP for other purposes. Again, a listening thread
unloads the UDP buffers. Another such thread manages the TCP/IP stack.
This stack has the listening socket in passive open mode [www.faqs.org/rfcs/
rfc793.html]. This new connection mode, available in Windows 2000 [Litwin
et al. 2004b], replaced those studied in our earlier prototypes. It handles
a larger number of incoming requests more effectively. In fact, it skips the
connection dialogue that previously was necessary for each request. It proved
to be by far the most efficient connection mode in our experience with LH∗

RS.
Many measures of the operations using the parity calculus reported below

compare the use of GF(28) and of GF(216). We expected the latter to be faster.
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Experiments mostly (but not always) confirmed our intuition and quantified it.
GF(216) provided the most noticeable acceleration for the erasure correction.
We could also confirm and measure the benefit of using our logarithmic matrix
Q, derived from our newest version of a parity matrix P, with a first column and
a first row of ones. We then measured the speed of the operations involving the
parity updates, namely the inserts, file creation with splits, and updates, as well
as bucket and record recovery. The study varied the availability level from 0 to
3. We left the study of delete, merge and scan operations for the future. As we
already said, the first two operations are of lesser practical interest, whereas the
latter is independent of the parity calculus unless it triggers a record recovery.
We also measured the speed of key searches as a basic reference. We averaged
each measure over several independent experiments.

Practical considerations lead to simplified implementation of some opera-
tions. Also, the experiments modified our own ideas on the best design of some
operations. We discuss theses issues in the respective sections.

The test-bed for our experiments included five P4 PCs with 1.8 GHz clock
rate and 512 MB memory, and a 2.6 GHz, 512 MB P4 machine. We used the
latter as a client. Others served as data and parity servers. Sometimes, we also
used additional client machines (733 MHz, P3). Our network was a 1 Gbps
Ethernet.

5.2 Parity Generation

To test the efficacy of using Q, we conducted experiments creating parity records
in a bucket with a logarithmic Q column, versus its original P column. We used
a group of m = 4 data buckets and created a parity bucket using the second
or third or fourth parity column of each matrix (the first column of P was that
of ones). A data bucket contained 31250 records. Using GF(28), the average
processing time shrank from 1.809 sec to 1.721 sec. We saved 4.86%. Use of
GF(216), reduced the time from 1.462 sec to 1.412 sec, that is, by 3.42%. Notice
that GF(216) was always faster, by about 20%.

We investigated the influence of the column and row of ones in the parity
matrix P, or equivalently, of a column and row of zeroes in Q. This means
that updates to the first data bucket only involve XORing, but no Galois field
multiplications. For GF(28), the processing time shrank further from 1.721 sec
to 1.606 sec, that is, by 6.68%. Using GF(216), we measured 1.412 sec and 1.359
sec, that is, 3.75% of additional savings. Again, GF(216) was always faster, but
by only about 15%.

As expected the Q with first column and first row of zeroes yields the fastest
encoding. We therefore used only this choice for our experiments below. We
attribute the always higher savings for GF(28) to the higher efficacy of XORing
byte-sized symbols.

5.3 Key Search

The key search times in the normal mode serve as the reference for the ac-
cess performance of the prototype, since they do not involve the parity calculus.
We measured the time to perform random individual (synchronous) and bulk
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(asynchronous) successful key searches. All measurements were done at the
client. We start the timing of an individual search when the client gets the key
from the application. It ends when the client returns the record received from
the correct server. The search time reported is the average over a synchronous
series of individual searches, one starting after the end of another. We start the
clock to measure a bulk search when the client gets the first key from the appli-
cation and we stop it when the application receives the last record searched. We
report the average time. During the bulk search, the client launches searches
asynchronously, as usual for a database query. These searches use UDP and a
custom flow control method to prevent a server overload. Interestingly, most of
our experiments did not even trigger this mechanism.

We measured the search time in a file of 125,000 records, distributed over
four buckets and servers. A record had a 4 B key and 100 B of nonkey data. The
average individual search time was 0.24 ms. The bulk one was 0.06 ms, four
times faster. The individual search is thus about 40 times faster than a single
disk access, whereas the bulk one is about 200 times faster. The server CPU
speed was the limiting factor for the former and the speed of the client for the
later.

5.4 Insert

We timed a series of individual and bulk inserts in the normal mode. The in-
serts addressed bucket 0, without triggering any bucket split. The idea was to
test the most unfavorable scenario, in which all the inserts from a client end
up at a single bucket. Inserts into multiple buckets with splits gave rise to dif-
ferent experiments, Section 5.5. We defined the individual insert time for this
experiment as starting when the client receives the record from the application
and ending when the client synchronously gets the acknowledgement from the
data bucket. Bulk inserts used asynchronous acknowledgements for the flow
control, as for the bulk key searches. The client acknowledges the insert to the
application after it gets its own acknowledgement. Otherwise an overflow of its
queues could result.

We did not measure the degraded mode. It would amount to collecting ar-
bitrary timeouts. We only implemented 1PC, leaving the more complex 2PC
protocol for the future. As we mentioned already, some, perhaps many, prospec-
tive implementations are also likely to choose only 1PC. We have nevertheless
made additional measurements, forecasting the 2PC performance as well. Our
experiments for the inserts measured the basic case of the data bucket sending
the acknowledgement to the client immediately after the messages to its k par-
ity buckets. Using 2PC would not change the insert time under this condition,
as long as the additional load did not saturate the server.

We timed a series of 10,000 inserts into an initially empty bucket of b =
10, 000, thus avoiding the split, as wished. Again, a record consisted of a 4 B
key and 100 B of nonkey data. We recorded 0.29 ms for k = 0, 0.33 ms for k = 1
and 0.36 ms for k = 2. The choice of GF did not matter as the %-record is simply
the inserted one. The average bulk insert time was 0.04 ms, seven to nine times
faster. That time was the same as for updates, as discussed in Section 5.6. Both
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Table I. Average Bulk and Individual Blind Update Times
(Milliseconds) per Record

Individual
Bulk k = 0 k = 1 k = 2 k = 3

GF(28) 0.04 0.25 0.48 0.57 0.58
GF(216) 0.04 0.24 0.50 0.55 0.59

bulk times were measured in the same way, and are similarly independent
of k.

The previous figures show that adding the first parity bucket to a 0-available
file slows down an insert on the average by 0.04 ms, or 14%. Adding one more
parity bucket costs slightly less, 0.03 ms, or 10%. The increment is due mostly
to the additional message. Its cost is about 0.03 ÷ 0.04 ms, as the bulk insert
time shows as well. This allowed us to trivially infer the timing for larger k’s.

Table I confirms these calculations for the updates. It also shows that the
time for the message with the %-record followed by its acknowledgment was,
in those experiments, about 0.05, about the double of the time above. These
numbers allow us to estimate the total time of an insert-processing at the
data bucket, and the throughput, if 2PC was used. Related details are in
Section 5.6. Applied here, for instance to k = 3, they show this time to be about
0.36 + 4*0.03 = 0.48 ms. The rationale for the formula is the time for the last
acknowledgment yet to come in from the server (others came normally earlier,
in parallel to the outgoing messages from the client), followed by three commit
messages sent in order by the client. Accordingly, we forecast the throughput
as about 2000 inserts/s. For k = 2 the time would be smaller, about 0.42 ms,
and the throughput higher, reaching about 2400 inserts/s. And so on.

All this appears to be a quite efficient behavior. Notice finally that the mea-
sured insert times at the client are respectively at least about 30 to 250 times
faster than to local disks (assuming 10 ms per access). As for a key search, the
individual insert time was bound mainly by the server speed, while the bulk
insert time was bound by the maximal client speed.

5.5 File Creation

Figure 7 shows the average file creation time, by inserts with splits this time,
for a bucket group of m = 4 data buckets and k = 0, 1, 2 parity buckets. The
inserts are individual ones. We did not experiment with bulk inserts, as they
need a more complex design of splits, left for future work, to prevent side effects
resulting from the concurrent processing of splits and of inserts. Besides, the
average time to create a file using l record bulk inserts would be at the client,
simply 0.04 l ms, given the bulk insert time. At a server, the time could be longer,
to complete the last inserts (see the following discussion of bulk updates). For
the previous experiments with inserts, during the file creation the data bucket
sends the acknowledgement to the client, after sending the messages to the
k parity buckets, but without waiting for the acknowledgements from these
buckets. The results we measured were practically the same for GF(216) and
GF(28). Hence, the charts shown apply to both fields, although we give the
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Fig. 7. Creation times (seconds).

numerical values for GF (28). We inserted a series of 25,000 records, again with
a 4 B key and 100 B of nonkey data per record. The bucket size was b = 10, 000.
A point of the chart corresponding to l inserts shows the total time to perform
these inserts.

The inserts caused the file to split thrice. The split of bucket 0 occurred nat-
urally after insert 10,000. A temporary slowdown of the insert times resulted,
greater for greater k. The next inserts went uniformly into buckets 0 and 1.
After slightly more than 10,000 further inserts, both buckets split almost con-
currently. That is why the chart seems to show only two splits.

From the times to insert the 25,000 records, in the figure, we can gauge the
typical cost of additional parity buckets for our file, once it scales to the steady
state with many groups. For k = 0, we have the creation time of 7.985 s. For
k = 1, we have 10.125 s, that is 27% more. Finally, for k = 2, the time is 10.974 s,
that is 8% slower than for k = 1. The related average times per record inserted
were 0.32 ms, 0.41 ms, and 0.44 ms for k = 0, 1, 2 respectively. Splits thus
respectively introduced additional average costs of 3 and 8 ms, as compared
to the costs of individual inserts alone. The percentage values are respectively
10.4%, and 24%. All together, these times are at least 20–30 times faster than
disk accesses.

As is to be expected, adding the first parity bucket causes the most noticeable
degradation. The percentage value of 27% is about twice that for an insert alone.
We now see a cost of the parity calculus for the splits. Adding parity buckets
has globally much less effect (a 8% slow-down), also because of the parallelism
of the parity updates. Notice however that there is no incidence on the cost
of the updates to the new parity bucket during the splits, as the difference to
the average time per insert for k = 2 remains 8 ms. It confirms logically that
split processing on the parity buckets is about fully parallel. We extrapolate
the increase for each value of k > 2 to be the same 8%. The increase is caused
mainly by the additional messaging at the data bucket.

The charts in the figure are about linear. The experiments thus confirm the
scalability of the scheme, and we can predict the creation times for larger files.
We create our files for k = 0, 1, 2 at the rate (speed), respectively, of 3131, 2469
and of 2278 records per second. For instance, to scale up our 2-available file to 1
M records should thus take 439 seconds about 7.3 minutes. More generally, as
our records are 104 B long, we create our files at a rate of 0.33 MB/sec for k = 0,
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0.25 MB/sec for k = 1, and of 0.23 MB/sec for k = 2. These numbers allow us
to predict linear creation times for other record sizes. Bulk creation times and
rates should be limited by the client and yet be about ten times faster from the
application’s point of view. For instance, less than a minute should suffice for a
1 M record file.

We also timed the use of our former Q matrix, without the first column and
row of ones. The creation time for k = 1 was 10.011 sec. Thus, our new Q speeds
up encoding time by almost 2%. While the acceleration appears to be slight, we
recall that it comes at no cost.

5.6 Update

To determine the update performance, we generated series of 500, 1000, 5000,
and 8000 blind updates to the records in our LH∗

RS file (same as for the insert ex-
periments). We updated different records, to prevent the caching. Table I shows
the results for bulk and individual updates. All updates used UDP and 1PC.
As before, we only measured 1PC. This time, however, the data bucket waits
for all the acknowledgements before sending the commitment to the client. The
second column gives the average bulk update time in the normal mode. These
measures start with the reception of the first update from the application and
ends with the send-out of the last of the series. The processing at the servers
may last longer. In addition, if the series is longer, then more records are per-
haps temporarily stored in the queue of the listening thread at each server.
Some acknowledgements may come back to the client after the end of the bulk
update. The processing time at the data bucket depends on k. Nevertheless, it
does not influence the bulk update time as defined here. If any acknowledge-
ments were negative, or missing, the client would start the degraded mode.
Notice that the bulk insert time is independent of the GF used.

The other columns list the average individual update times for k = 0 . . . 3.
The bulk update times are basically six times faster, as the comparison for k = 0
shows. The numbers show also that using one parity bucket doubles the update
time into the data bucket alone. This result matches the intuition. However,
adding more parity buckets only increases the time by 10% to 20%. Notice that
adding the 3rd parity bucket adds only 2–7%. All this is again, nice behavior.
One may further extrapolate these results to the server processing of the bulk
updates. Finally, using GF(216) does not appear uniformly faster. The results
are practically identical for both fields, as for inserts.

Compared to the inserts, the bulk times also do not change, as the client
processes inserts and updates at the same possible speed. The individual update
time takes, in contrast, considerably longer. The times in Table I for k = 1 are
already almost 45% longer than the time to insert. It is the measure of the
additional processing of the %-record (XORing with the before image) followed
by the UDP messaging and the waiting for the acknowledgements. The first ones
come back in parallel to the outgoing messages, hence only the last one actually
counts. To speed up the parallelism, the listening thread at the parity buckets
acknowledges the %-record at the earliest moment, namely when it saves it in
its queue from the communication buffer, before the actual encoding into the
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parity record. That is why the times to process the message from the bucket
followed by its acknowledgment are only about twice of the cost of a message,
about 0.05 ms on the average. This matches the results for the inserts where
the measured message time was about 0.03 ms. The results show furthermore
that the XORing at the client took about 0.18 ms on the average. It appears
slightly slower for GF (216). This reinforces the similar findings in Section 5.2.

The individual insert time for k = 0 is about 15% longer than that of an
individual update. This is the price for the internal LH splits within the bucket
for the inserts. Next, if the updates used 2PC, then the data bucket would need
to issue an additional k commit messages. An update time for, for example,
k = 3 and GF (216), assuming finally 0.03 ms per message would need at the
data bucket about 0.59+0.09 = 0.68 ms. Hence the throughput would be almost
1500 updates/s. This is less than for the inserts, but the number still appears
rather very attractive by comparison to the present disk files even for k ≤ 1
only.

5.7 Bucket Recovery

The recovery manager performs this manipulation as in Section 4.1. For imple-
mentation related reasons however, our prototype locates the recovery manager
at a parity bucket and not at a spare. To measure the performance, we simu-
lated the creation of an LH∗

RS group with 4 data buckets and 1, 2, or 3 parity
buckets. The group contained 125,000 = 4 · 31,250 data records consisting again
of a 4 B key and 100 B nonkey data. We then reconstructed one, two, and three
buckets, made unavailable. We neglected the synchronization phase, whose in-
fluence on the response time would be minimal anyhow. The recovery manager
loops conceptually over all the existing record groups, over all the parity records
in the parity bucket (Section 4.1). In fact, it recovers records by slices of a given
size s. It requests s successive records from each of the m data/parity buckets,
and recovers the s record groups. Then, it requests the next s records from each
bucket. While waiting, it sends the recovered slice to the spare(s). Figure 8
presents the effect of slice size on the recovery of a data bucket in the sample
case of using the first parity bucket with 1’s only and GF(216). Since the op-
eration is much longer than those of individual records discussed till now, we
measured not only the total time (T ), but also the process time (P ), and the
communication time (C).

We determined that the recovery time greatly decreases for a larger s. For
s = 1, we have C = 149 s, P = 1.735 s and T = 165 s. Figure 8 does not
give these values since they are so large, but rather displays values only for
s ≥ 100. Once s is above 1000, T drops under 1s, and P and C under 0.5 s. All
the times decrease slightly for larger s and become constant when we choose
s over 3000. This is a consequence of our latest communication architecture
based on the already mentioned passive TCP connections. The result means
that a server may efficiently work with buffers much smaller than the bucket
capacity b, for example, 10 times smaller. The experiments with our earlier
architectures are in Moussa [2003]. They show the clear superiority of our
current implementation.
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Fig. 8. A single data bucket recovery time (milliseconds) as function of the slice size s.

Table II. Best Data Bucket Recovery Times (seconds) and Slice Sizes

GF(28) GF(216)
s T P C s T P C

1-DB (XOR) 15625 0,520 0,225 0,296 6250 0,552 0,240 0,312
1-DB (RS) 6250 0,932 0,630 0,297 15625 0,656 0,354 0,297
2-DBs 15625 1,464 1,156 0,302 15625 0,875 0,562 0,281
3-DBs 6250 2,094 1,711 0,374 15625 1,188 0,823 0,361

Table II completes Figure 8 by listing the T, P, C times for s values minimiz-
ing T and k = 1, 2, 3. We used GF(28) and GF(216). The difference between a T
value and the related value of P + C is thread synchronization and switching
time. We have also measured all these times for the other s values in Figure 8.
For s ≥ 1250, the differences from the times listed here were under 15% for
1-DB (data bucket) recovery, 5% for 2-DB recovery, and 2% for 3-DBs. The first
line of the table presents the 1-DB recovery using the XOR decoding only, as
in Figure 8. The second line shows 1-DB recovery using the RS decoding (with
the XORing and multiplications). We used another parity bucket instead of the
one with ones only, just as in Litwin and Schwarz [2000]. The XOR calculus
showed itself to be notably faster for both GFs used. The gain was expected,
but not its actual magnitude. P becomes indeed almost three times smaller
for GF(28), and almost 1.5 times smaller for GF(216). T decreases less, as it
contains the C value. This value is naturally rather stable and turns out to be
relatively important with respect to P , despite our fast 1 Gbps network. For
the RS decoding we have C > 0.5P at least. Even more interestingly, we reach
C > P for the XOR decoding.

All together, our numbers prove the efficiency of the LH∗
RS bucket recovery

mechanism. It takes only 0.520 s to recover 1 DB in our experiments, and less
than 1.2 s to recover 3 DBs, 9.75 MB of data in three buckets. The growth of T
appears to be sublinear with respect to the number of buckets recovered. This
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Table III. Parity Bucket Recovery Times (seconds) for the Slice
Size of s = 31 250 Records

GF(28) GF(216)
T P C T P C

PB (XOR) 1.872 1.316 0.317 2.062 1.484 0.322
PB (RS) 2.228 1.656 0.307 2.103 1.531 0.322

is a consequence of parallelism at the implementation level, and of the recovery
of a bucket group as a whole at the conceptual level. The numbers convincingly
confirm the advantage of using GF(216). It halves P of any recovery measured,
with the exception of recovery using XOR only. This was the rationale for our
choice of this field for the basic LH∗

RS scheme, given also that with it, parity
calculation is as fast as using GF(28). Notice that C in Table II increases more
moderately than T as the function of the number of DBs recovered.

As discussed in Section 3.4, we used the logarithms of the coefficients in
H−1 to obtain the recovery times in Table II. We also experimented using H−1

directly. The results for P were slower, up to 10% for 3-DB recovery, confirming
our choice.

The flat character of charts in Figure 8 for larger values of s confirms the
scalability of the scheme. It allows us to also guess the recovery times for larger
buckets. We can infer from the above numbers that we recover a data bucket
group of size m = 4 from 1-unavailability at the rate (speed) of 5.89 MB/sec of
data. Next, we recover two data buckets of the group at the rate of 7.43 MB/sec.
Finally, we recover the group from 3-unavailability at the rate of 8.21 MB/sec.
If we have thus, for instance, 1 GB of data per bucket, the figures imply a value
for T of about 170 sec for 1-DB recovery, 270 sec for 2 GB recovered, and 365
sec, about 6 min per 3 GB recovered, respectively. If we choose the group size
m = 8, to halve the storage overhead, the recovery rates will halve as well,
while the recovery time will double, and so on.

Table III presents the parity bucket recovery time, again for 31,250 records
to recover and s = 31, 250. The time T to recover bucket P0 using XOR only,
analyzed in the row marked PB (XOR), is faster than for the other buckets using
the RS calculus. We again observe fast performance. The XOR-only recovery
using 2 B symbols (from GF(216)) is less efficient than that using 1B symbols
(from GF(28)). We have a reverse picture for the other parity bucket, as the
last row in Table III shows. The small difference in P value with respect to the
one reported in Section 5.2 is due to the experimental nature of the analysis.
The measurements naturally vary slightly among experiments. Similarly as for
data buckets, Table III allows us to infer parity bucket recovery rates per MB of
data stored for various values of m and the recovery times of the parity buckets
of various sizes.

5.8 Record Recovery

Our prototype places the record recovery manager at one of the parity buckets.
It acts as described in Section 4.2. Table IV shows the average total record
recovery time T we measured. The bucket size was b = 50, 000. The group size
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Table IV. Record Recovery Times (milliseconds)

GF (28) GF (216)
XOR RS XOR RS
1.285 1.308 1.297 1.327

was again m = 4. The times are measured at the parity bucket. They start when
the bucket gets the message from the coordinator, and end with the recovery of
the record.

The times for GF(216) are slightly higher. The reason is that we convert 1B
characters to 2B symbols and back. In any case, we measured the average scan
time of our parity bucket to locate the key c of the data record, as described in
Section 4.2, to be 0.822 ms. This is the dominant part of the total time (62%
and 64% respectively).

The results match our intuition and the experimental key search times. They
confirm that the basic record recovery capability should prove to be often suffi-
cient in practice. The deterioration of the search time with respect to the normal
one, we recall of 0.24 ms, is nevertheless about 5.5 times. If one seeks faster
record recovery, or if the buckets are much larger, the additional index (c, r) at
the parity bucket, mentioned in Section 4.2, should help. For GF(216) and our
first parity bucket, one may estimate the decrease to almost 1.296 – 0.822 =
0.474 ms. The ratio to the normal time becomes less than twice. Notice however
the price tag for the index: more storage at the parity bucket and additional
processing of an insert and delete at the parity bucket. Knowledge of the scan
time allows us to further evaluate the record recovery time for other values of
m or b. The communication and processing times are about linear with m, while
the bucket scan time is linear with b. Notice finally that even the basic record
recovery times remain significantly faster than for a disk file. In our case, the
typical ratio should be at least about eight times.

6. RELATED WORK

Traditionally, high availability was not part of a (key-based) data structure
in both centralized and distributed environments. If needed, a lower storage
level such as mirroring or RAID-like techniques provided it. This approach
simplifies the design of a data structure, but it can deteriorate access times
in a distributed environment. For example, a dictionary data structure using
hashing could place a data unit at some particular node. However, the under-
lying RAID system could move the data to a different node or even distribute
it over several nodes. This lower-level interference would result in additional
messaging that an integration of the parity data management into the hashing
structure could avoid.

The problem is more acute for a scalable distributed storage environment
with a large number of nodes. The elementary reliability calculus shows that
higher levels of availability are often necessary for a data structure stored
on many nodes. One approach provides the high level at each node. This ap-
proach fails if the storage nodes are standard PCs or workstations, especially
in a P2P network where nodes may have low availability [Weatherspoon and
Kubiatowicz 2002]. In addition, files in the same environment may require
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different availability levels just because of their different sizes. The alternative
is to integrate high availability into scalable distributed data structures and
let the availability level itself scale.

The concept of a high-availability data structure appeared in response to
the need for integrating high-availability and SDDS [Litwin and Neimat 1996].
The first high-availability SDDS was LH∗

M, where high-availability results from
mirroring two LH∗ files. The files contain exactly the same records. They may
however differ in their internal structures, for example, the bucket size. In any
case, the two files in LH∗

M are more strongly coupled than usual mirrors. LH∗
M

can even recover some cases of double or more unavailability.
Litwin et al. [1997] proposed another 1-availability SDDS called LH∗

S. LH∗
S

partitions a record into n segments, stored at n different sites. It adds an (n+ 1)st

XOR parity segment at some other site. Compared with LH∗
M, the parity over-

head is much smaller, close to 1/n. Operations require, in contrast, more mes-
sages. An, LH∗

S key search in normal mode needs n messages, even though the
messages are shorter.

Another 1-available SDDS, LH∗
g , [Litwin and Risch 1997, 2001; Lindberg

1997] keeps records intact. It introduces the concept of record groups used
by LH∗

RS. Retrospectively, the LH∗
RS parity calculus generalizes LH∗

g to higher
availability. As for LH∗

RS, an LH∗
g record enters a record group when it is created.

The group members are always on different servers and the group contains
an additional parity record of the same structure as a LH∗

RS parity record.
The initial record group is the same for an LH∗

g record as for an LH∗
RS record.

However,an LH∗
g record keeps its initial record group membership, regardless

of its moves caused by splits. In comparison to LH∗
RS, LH∗

g splits are faster.
In contrast, a data bucket recovery processing is more costly. In particular, one
always scans all the parity buckets, instead of usually only one for LH∗

RS. Notice
that the recovery is not then necessarily longer than for LH∗

RS, as the scans can
be parallel. If the communication is slow with respect to the processing time, it
can be even faster.

LH∗
SA was the first SDDS to achieve scalable availability [Litwin et al. 1998,

1999]. To achieve k-availability, LH∗
SA places each record in k or k+1 different

record groups that only intersect in this one record. Each record group has an
additional parity record, basically consisting of the XOR of the other records in
the group. LH∗

SA places the buckets conceptually into a high-dimensional cube
with n buckets in the first k or k + 1 dimensions. Just as for LH∗

RS, a controlled
or an uncontrolled strategy adds parity buckets. A small LH∗

SA file with a k > 1
has a larger storage overhead than a corresponding LH∗

RS file. This advantage
of LH∗

RS dissipates for larger files. LH∗
SA parity calculations use only XORing,

which gives it an advantage over k-available LH∗
RS files for k > 1. However, if

there is more than one unavailable bucket, recovering a lost record can involve
additional recovery steps. A deeper comparison of trade-offs between LH∗

SA and
LH∗

RS remains to be undertaken.
Outside the domain of SDDSs, research has addressed high-availability

needs for distributed flat files for many years. The dominant approach was repli-
cation [Haskin and Schmuck 1996]. The major issue was consistency of replicas
[Paris 1993]. Disk arrays in a centralized environment historically needed high
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availability with less storage overhead [Burkhard and Menon 1993; Hellerstein
et al. 1994]. The arrays typically have a fixed number of disks so that the pro-
posed high-availability schemes were static. The aspects under investigation
were mainly the parity update mechanisms (e.g. parity logging), and the parity
placement providing the 1-availability through XORing. These were the perfor-
mance determinants of a disk array. Next, parity placement schemes appeared
to be intended for larger, but still static, arrays, for example, Alvarez et al.
[1997]. Current research increasingly focuses on very large storage systems,
using an expandable number of storage units, whether disks or entire servers.
Recent proposals for the k-available (k > 1) erasure correcting codes discussed
in App. C (Online Appendix available in the ACM Digital Library) came from
this context.

High-availability is also a general goal for a DBMS. Nevertheless, our as-
pect of this concept, the unavailability of a part of data storage, has received
relatively little attention. The general assumption seems to be the use of a
high-availability storage or file system underneath. Typically, it should be soft-
ware or hardware RAID storage. For a parallel DBMS, this should concern
each DBMS node. At the database layer, replication seems the only technique
used. The DBMS is then typically 1-available, with respect to storage node
unavailability.

The Clustra DBMS, now a commercial product, proposes a DBMS level struc-
ture that some claim to be the most efficient in the domain [Sabaratnam et al.
1999]. It hashes partitions of a table into fragments located each at a differ-
ent node. The nodes communicate using a dedicated high-speed switch. Clustra
hashing is static, hence has limited scalability compared to LH∗

RS. The practical
limit is 24 nodes at present. Each fragment is replicated on two nodes, using
the primary copy approach. If a fragment is unavailable, (detected by lack of
heart beat), its available copy, possible the primary one, is copied to a spare.
The partitioning typically limits the recovery to a single fragment. The whole
scheme makes Clustra tables only one-available and limits their scalability
compared to our scheme. This conclusion holds for other prominent DBMSs,
whether they use for the parallel table partitioning, the (static) hashing (DB2),
or range partitioning (SQL Server) or both (Oracle).

Research has also started addressing the high-availability needs of scalable
disk farms [Xin et al. 2003, 2004]. These should be soon necessary for grid com-
puting and very large Internet databases. Some simple techniques are already
in everyday use. They are apparently replication based, but covered by corpo-
rate secrecy. The prominent example is Google. The gray literature estimates
its farm spreading already over more than 10,000 Linux nodes, perhaps as
many as 54,000 [Donoghue 2003; Economist 2003]. There are also open research
proposals for high-availability distributed data structures over large clusters
specifically intended for the Internet access. One is a distributed hash table
scheme with built-in specific replication [Gribble et al. 2000]. An ongoing re-
search project follows up with the goal of a scalable distributed highly-available
linked B-tree [Boxwood 2003].

Emerging P2P applications, including those based on Wi-Fi, also have
compelling high-availability storage needs [ Anderson and Kubiatowicz 2002;
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Kubiatowicz 2003; Dingledine et al. 2000]. In this new environment the avail-
ability of the nodes should be more “chaotic” than one typically supposed in the
past. Their number and geographical dispersion can also be larger by orders of
magnitude, possibly running into hundreds of thousands in the near future and
later reaching millions, spread worldwide. This thinking clearly shares some
rationales for LH∗

RS. Our scheme could thus turn out to be useful for these new
applications as well.

7. CONCLUSION

LH∗
RS is a high-availability scalable distributed data structure. It scales up to

any size and any availability level k that one can reasonably foresee for an
application these days. File scalability is transparent to the application, as
for any SDDS. The k-availability may scale transparently as well, or may be
adjusted by the application on demand.

The scheme matured in many aspects from our initial proposal [Litwin and
Schwarz 2000]. Changes were made to the parity calculus and to various algo-
rithmic issues to make the file always at least (K −1)-available and make the
parity calculus as fast as possible. We have thus increased the Galois Field size
to GF(216). We have changed the parity matrix P so it has a first column and
first row of ones. We have also improved the calculus by taking advantage of
logarithmic parity. We have built a prototype implementation that proves the
feasibility of the scheme. We have experimented on this basis with the new,
and the former, parity calculus, as well as with the previously mentioned algo-
rithmic issues. Performance analysis showed a substantial speedup of various
operations.

At present, for the most frequent case of k = 1, our erasure correction uses
XORing only and is thus as fast as possible to our best knowledge, under our
constraints, especially that of storage efficiency. For k > 1, it appears more
effective in practice than if we used any alternative parity code or scheme we are
aware of. This is also true for our own earlier approach, as we just mentioned.
The as yet unique presence of the row of ones contributes to this performance.
Likewise, our original use of the logarithmic matrices. In particular, while the
parity storage and communication overheads increase substantially with the k
used, they globally always remain close to the optimal bounds. Another known
high-availability SDDS scheme may nevertheless eventually outperform the
LH∗

RS on a selected feature. The diversity should profit any application.
Finally, our prototype implementation has shown very fast access and recov-

ery performance. Our test-bed files with 125K records recovered in less than
a second from a single unavailability and in about two seconds from a triple
one. Individual search, insert, and update times were at most 0.5 msec for a
3-available file. Bulk operations were many times faster. This performance is
partially due to processing data in the distributed RAM. Altogether, the capa-
bilities of our scheme should attract numerous applications of hash files, for
which LH∗

RS should be “plug-compatible,” as we discussed in the introduction.
To recall, these applications are potentially very numerous, as hash files are
ubiquitous. This area includes new domains of grid computing and of P2P, and
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popular DBMSs. The latter still use the more limited static and 1-available
replication or RAID storage for high-availability.

Future work should concern experiments with applications of our scheme.
One should also port the parity subsystem to other known 0-available SDDS
schemes. The range partitioning schemes appear to be preferred candidates.
One should also add the capabilities of concurrent and transactional access
to LH∗

RS. Notice that the data records of a record group conflict on the parity
records. One should finally study in more depth the discussed variants, includ-
ing those in Online Appendix C available in the ACM Digital Library.

APPENDIX

A. PARITY MATRICES

We present the first 32 row by 10 column submatrices of the generic parity
matrix P’ and of the generic logarithmic parity matrix Q’ for GF(216) that we
use for LH∗

RS. The values are four hexadecimal digits. The submatrices allow
for actual matrices P and Q for groups of size m up to 32, with k up to 10, values
that should suffice in practice. Next, we show 32 × 20 portions of P’ and Q’ for
GF(28) used in the examples. The entries of P’ are now GF(28) elements given
as two hexadecimal digits. The entries of Q’ are logarithms, given as decimal
numbers between 0 and 254. The program to generate the complete matrices
can be requested from the authors at CERIA [http://ceria.douphine.fr].

Fig. 9. Generic parity matrix P’ for GF(216): first 32 rows by 10 columns.
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Fig. 10. Generic logarithmic parity matrix Q’ for GF(216): first 32 rows by 10 columns.

Fig. 11. Generic parity matrix P’ for GF(28): first 32 rows by 20 columns.
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Fig. 12. Generic logarithmic parity matrix Q’ for GF (28): first 32 rows by 20 columns.

B. DEFINITION OF TERMS

Term Description Typical Value
Addressing

F an LH∗
RS file

i file level initially 0, scales
monotonically

n split pointer 0—2′–1
(i, n) file state 0—i
N current number of data buckets in the file N = 2′ + n
a logical address of a data bucket server [0; 1; 2; . . . ; M-1]
A physical address of a data bucket server IP address
A0 initial physical address of the file (server of data

bucket 0)
IP address

j data bucket level i or i + 1
c (primary) key of a data record random; 0—232 -1
hi series of hash functions C mod N * 2′

α load factor 0.6—1.0
Parity calculus

GF (2 f ) Galois Field of size (2 f ) GF (216)
F Galois Field of size (28)
ECC Erasure Correcting Code
RS Reed-Solomon Code
P parity field (in parity record) GF (216) symbols
C record group structure field (in parity record) c0, c1, . . . cm−1

k bucket (record) group local availability level 1—10
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Kfile global file availability level 1—10
g bucket group number 1,2 . . .

r data record rank (and parity record key) 1—b
α primitive element in GF α = 2
logα(ζ ) logarithm of symbol ξ ; ξ ∈ GF (2 f ), ξ ̸= 0 Table 5
antilog ( f ) antilogarithm of integer i; 0 ≤ i< 2 f – 1 Table 5
I identity matrix m × m
P’ generic parity matrix Figure 9
P actual parity matrix upper left m × K

submatrix of P’
Q’ generic logarithmic parity matrix Figure
Q actual logarithmic parity matrix upper left m × K

submatrix of Q’
H, H−1 decoding matrices (m × m, formed from avail. columns

of P)
LA list of available buckets in a bucket group recovery m
LS list of spare buckets for a bucket group recovery l ≤ k
File Param. Description Typical Value
B bucket capacity (records per data bucket) 50—1,000,000
K intended file availability level (scales monotonically) 1—5
m bucket group size (also max. record group size) 4—32
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LJUNGSTRÖM, M. 2000. Implementing LH∗

RS: A scalable distributed highly-available data struc-
ture, Master Thesis, Feb., CS Dep. U. Linkoping, Sweden.

LUBY, M., MITZENMACHER, M., SHOKROLLAHI, M., SPIELMAN, D., AND STEMANN, V. 1997. Practical Loss-
Resilient Codes, STOC 97, Proceedings of the twenty-ninth annual ACM Symposium on Theory
of Computing, El Paso, TX, 150–159.

ACM Transactions on Database Systems, Vol. 30, No. 3, September 2005.



LH∗
RS—A Highly-Available Scalable Distributed Data Structure • 811

MACWILLIAMS, F. J. AND SLOANE, N. J. A. 1997. The Theory of Error Correcting Codes.
Elsevier/North Holland, Amsterdam.

MOUSSA, R. 2003. In Distributed Data and Structures 4, Carleton Scientific (Records of WDAS
2002, Paris).

MOUSSA, R. 2004. Experimental Performance Analysis of LH∗
RS. CERIA Res. Rep. [CERIA].

MOUSSA, R. AND LITWIN, W. 2002. Experimental performance analysis of LH∗
RS parity manage-

ment. Distributed Data and Structures 4, Records of the 4th International Meeting (WDAS 2002),
Paris, France.
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