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Abstract

Signatures detect changes to the data objects. Numerous schemes
known, e.g., the popular hash based SHA-1 standard. We propose a no
scheme we call algebraic signatures. We use the algebraic calculusin a
lois Field. One major consequence, new for any known signature scher
is sure detection of limited changes of parameterized size. More precis
we detect for sure any change that does not exceeds n-symbols for an
symbol signature. For larger changes, the collision probability is typicz
insignificant, as for the other known schemes. We apply the algebraic sig
tures to the Scalable Distributed Data Structures (SDDSs). We filter at 1
SDDS client node the updates that do not actually change the records.
also manage the concurrent updates to data stored in the SDDS RAM bu
ets at the server nodes. We further use the scheme for the fast disk backur
these buckets. We sign our objects with 4-byte signatures, instead of 20-b
standard SHA-1 signatures that would be impractical for us. Our algebr
calculusisthen also about twice asfast. We present the theory of the scher
discuss the implementation in our SDDS-2000 prototype, overview the f
formance, and directions for further work.
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I ntroduction

A signature is a string of a few bytes intended to uniquely identify |
tents of a data object (arecord, a page, afile, etc.). The concept is that
signatures prove the inequality of the contents, while identical signatu
cate equality, with high probability at least. Signatures appear therefore
potentially useful tool to detect the updates or discrepancies among t
cas[1, 2, 3, 6, 17, 22]. Their practical use required further properties, |
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since the updates often follow common patterns. In atext document the
(switch) of n symbolsusually dominates. A database record update often
only relatively few bytes. Common updates should change the signatt
should not lead to collisions. The collision probability should be aso u
low for every possible update, although no schemes can guarantee the <
change for any update. Many signatures schemes with further “good pre
for specific applications have been be proposed, e.g., for documents, agair
mission errors, malicious aterations ... [5, 8, 9]. The prominent public
is SHA-1, which provides a 160-bit secure hash signature, [20, 10]. The
of asignature appeared to us useful for the management of a Scalable Di:
Data Structure (SDDS). Most known SDDS schemes are a hash LH* or
file, or a range partitioned RP* file [12, 13, 14], managed by the SDI
prototype system available for download [4]. SDDSs are intended for
or distributed databases on multicomputers, grid or P2P systems [15, :
SDDS-2000 files reside in distributed RAM buckets for access performe
rently reaching more than 100 times improvement over the disk data.

The use of signatures appeared motivated in the SDDS context as
First, some applications of SDDS-2000 may need the disk back up of the
from timeto time. One needsthen to find the only areasthat changedin th
since the last backup. For reasons we detail later, essentially because SDI
was not initially designed for this need, the traditional dirty bit approach
impractical in our case. The signatures appeared in contrast potentially
workable approach.

Next, it appears useful to sign the record updates. It was indeed obse
when an application requests a record update, often it does not mean
change to the record effectively occurred. Equality of the signatures bety
before and after images means then that the record transfers between tt
cation node and the SDDS data storage server, would be useless. Likev
subsequent write at the server would be the waste of time aswell. Finaly.
appears that the signatures may also prevent the concurrent record updat:

However, it appeared that the properties of known signature schen
the 20B size and calculus time of SHA-1, do not fit best our purpose. V
duce therefore a new method that we call the algebraic signatures. Our r
signature is the concatenation of n power series of Galois Field (GF) sy
GF(28) or GF(2'6). While our algebraic signatures are not cryptographi
cure, they exhibit a number of attractive properties. First, we may produ
signatures, sufficient for our goals, e.g., 4B long. Next, the scheme is
known, to the best of our knowledge, to guarantee that the objects differ
symbols have guaranteed different n-symbol signatures. Furthermore, th
bility that a switch or any update leads to a collision is aso sufficiently
may also calculate the signature of an updated object from the signatu
update and from the previous signature. Finaly, we may gather signatl
tree of signatures, speeding up the localization of changes.
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Below, we first describe morein depth our motivating SDDS needs. |
recall basic propertiesof aGF. Afterwards, we present our approach, we
the implementation, and we discuss the experimental results. We concli
directionsfor the further work.

2 Signaturesfor an SDDS

We recall that a Scalable Distributed Data Structure (SDDS) uses the serv
to store afile consisting of records or more generally objects. Records o
have a unique key and are stored on each server in buckets. The data
implements the key-based operations of inserts, deletes, and updates &
scan queries. The application requests these operations from the SDDS
its node. The client manages the query delivery through the network tc
propriate server(s) and receives the reply if any. The file scales with th
through the splits. Each split sends about half of a bucket to a new one,
ically appended. The buckets reside for the processing entirely in the di:
RAM. We apply the signatures to the disk backup of SDDS buckets ar
record updates. While these were our motivating needs, others appeared
and we signal them in the Conclusion.

2.1 FileBackup

We wish to backup an SDDS bucket B on disk. We only want to mo
parts of the bucket that are changed from the current disk copy. The tr:
approach is to divide the buckets into pages of reasonably small granul:
maintain a dirty bit for each page. We reset the dirty bit when the page
the disk and set it when the pageis read back. We move only dirty page:
The implementation of this approach for our running prototype SDDS-.
would demand refitting a large part of the existing code that was not (
accordingly. As often, this appeared an impossible task in practice. The
code is alarge software that updates the bucket in many places. Differer
functional parts of the code were produced over years by different stude
left the team since.

Another approach is to calculate a signature for each page when dat
move to the disk. This computation is independent of the history of th
page and does not interfere with the existing maintenance of adata struct
isthe crucial advantage in our context.

More in detail, we provide the disk copy of the bucket with a signatt
which is simply the collection of al its page signatures. Before we mov
to disk, werecalculate its signature. If the signatureis identical to the ent
signature map, we do not write the page.

Thedlicing of the bucketsinto pagesis somewhat arbitrary. The signa
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should fit entirely into RAM (or even the L2 cache using for examplethe
macro). Smaller pages minimize transfer sizes, but increase the map an
signature calculus overhead. One may expect the practical page size sor
between 512B and 64K B. The best choiceis application depend. In any
signature calculus speed is THE challenge as it has to be small with respe
disk write time. Another challenge is that the practical absence of the c
to avoid an update loss. The ideal case is the zero probability of a collis
isimpossible or, in our case, too expensivein practice, it should be smal
to live with. After al, recall that when we write database updates to di
only very likely, but never sure that they are actually posted. The datab:
generally do not bother anyway.

Presently, we implement the signature map simply as atable, since it
RAM. Otherwise, the algebraic signaturesallowsto structurethe map intc
turetree. In atree, one may compute the signature at the node from the si
of al descendents of the node. This speeds up the identification of the po
the map where the signatures have changed (similar to [17] et al.) More
Section 4.1.

2.2 Record Updates

We recall that an update operation only manipulates the non-key part of
R. We distinguish between the before-image Ry, that is the contents of
the client update, and the after-image R,, the contents after the updats
and S, denote the signatures of the before and after-image, resp. The
normal if Ry depends on Ry, e.g., Salary := Salary + 0.01*Sales. Tt
isblind if R, is set independently of Ry, e.g., if one requests Salary =
a house surveillance camera updates the stored image. The application |
for anormal update and perhaps not for a blind one. In both cases, it is ¢
aware whether the actual result is effectively Ry # Ry. Asin the abovee
for unlucky salesmen in the dot-bust era, or as long as there is no burgl
house.

The application nevertheless typically requests the update from the d
agement system that also typically executesit. This“trusting” policy, i.e.
is an update request, then it had to be the data change, characterizesin p
al the DBMSs we are aware of. It is kind of surprising after all, since
icy can often cost a lot. Tough times can leave thousands of salesmen
sale, leading to useless transfers between clients and servers and to the
processing on both nodes of thousands of records with the tuples. Lik
security cameraimage is often a clip or movie of several Mbytes, |eadi
equally futile effort.

Furthermore, on the server side, several clients may attempt to read ¢
concurrently the same SDDSrecord R. It isbest to let every client read ar
without any wait. The subsequent updates should not however overrideea
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Our approachto thisclassical constraint isfreely inspired by the optimist
of the concurrency control of MS-Access which is not the traditional or
in database books such as[11].

In this context, the usefulness of signaturesfor SDDS updates comes
following scheme. The application that needs Ry, for a normal update re
key search of R from the client. When done with its update calculus, the
tion returns to the client Ry and Ry. The client computes S; and S,. If
then the update actually did not change the record. Such updates terming
client. Only if S; # S, does the client send Ry and S, to the server. Tt
accesses R and computesits signature S. If S, = S, then the server upd
R:= R,. Otherwise, it abandons the update. A concurrent update had tc
to R in the meantime, since the client read Ry, and the server received if
R,. If the new update proceeded, it would override that one, making ti
non-serializable. The server notifies the client about the rollback, whicl
alerts the application. The application may read R again and redo the upc

For a blind update, the application provides only R, to the client. T
computes S; and sends the key of R, to the server requesting S. The ser
putes Sand sendsit tothe client as S,. From this point, theclient and the s
proceed as for the normal update. Calculating and sending Salone as Sy,
avoids the transfer of Ry to the client. It may avoid further the useless
of Ry to the server. These can be substantial savings, e.g., for the sun
images.

The scheme does not need locks. Also, aswe have seen, the signature
saves the useless record transfers. Besides, neither the key search, nor t
or deletion need the signature calculus. Hence, none of these operatior
the concurrency management overhead. All together, the degree of con
can be potentially high. The scheme roughly corresponds to the R-Co
isolation level of the SQL3 standard. Its properties make it attractive
applications that do not need transaction management. Especialy, if seal
the predominant operation, as one considersin genera for an optimistic

The scheme does not store signatures. Hence, the storage overhead c:
terestingly strictly zero. Thisis not possiblefor timestamps, probably use
Access, adthough that overhead is usually negligible, hence perfectly ac
in practice. In fact, it can still be advantageous to vary the signature sc
storing the signatures with their records. As we show later, the storage c
server can be then also usualy negligible, of only about 4B per signat
client sends in this case also S; to the server which stores it in the file
if it accepts the update. When the client requests R it getsit with S, If t
regquests Salone, the server simply extracts Sfrom R, instead of dynamic
culating it. All together, one saves the S, calculus at the client and the
the server. Also, and more significantly perhapsin practice, the signature
becomes entirely deported at the client. Hence, it is entirely paralel an
concurrent clients. This can enhance the update throughput even further.
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Whether one stores the signature or not, the speed of the signature ce
clearly the challenge again. Since a record key search in or insert into &
reaches the speed of 0.1 ms at present, the record signature calculus tim
be longer than dozens of microseconds in practice. Another challenge
again, the total or at least practical absence of the collisions, to avoid an
loss.

3 GaloisFidds

A Galoisfidd (GF) is finite field. Addition and multiplication in a GF «
ciative, commutative, and distributive. There are neutral elements called
one for addition and multiplication respectively, and there exist inverse ¢
regarding addition and multiplication. We denote by GF(2 ') a GF over t
al binary strings of acertain length f. GF(28) and GF(216) are our main
Their elements are respectively byte and 2-byte strings.

We identify each binary string with a binary polynomial in one fol
known x. For example, we identify the string 101001 with the polynon
x3 4 1. We further associate a generator polynomial g(x) with the GF.
polynomial of degree f that cannot be written as a product of two other
mials other than the trivial result of amultiplication of 1 with itself.

The addition of two elements in our GF is that of their binary poly
In practice, the sum of two strings is the XOR of the strings. The pr
two elements is the binary polynomial obtained by multiplying the two
polynomials and taking the remainder modulo g(x). There are severd
implement this cal culus. We use the logarithmic multiplication method we
soon. It uses the primitive elements of a GF with s elements, which are
with the following properties. The order of a non-zero element o, ord(c
smallest exponent non-zeroi such that o' = 1. All non-zero elementsina
afinite order. An element o is primitive, if ord(o.) = s— 1. It iswell know
any given primitive element «, all the non-zero elementsin thefield are
powers o/ ,, each with a uniquely determined exponent i € {0,...s— 1}.
usually has several primitive elements. In particular, any o' is aso a |
element if i and s— 1 are coprime, i.e., without non-trivial factorsin ¢
Our GFs contain 2 elements, hence the prime decomposition of 27 — 1
contain the prime 2. For our basic valuesof f = 8,16, 27 — 1 hasonly fev
hence there are relatively many primitive elements. For example, for f
count 127 primitive elements or roughly half the elementsin the GF.

We fix one primitive element o.. Every non-zero element 3 is a powe
B=a', wecal i the logarithm of B with respect to o and write i = log,
we call beta the antilogarithm of i with respect to o, and write § = ant
The logarithms are uniquely determined if we choosei tobe0 <i < 2f
set 1og(0) = —eo.
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The multiplication is now given by the following formulawhich uses
modulo 2 —1:

B -y = antilog, (log,,(B) +10g,(Y))-

We implement GF multiplication on this basis as follows. We create one
logarithms of size 21 symbols. We also create another one for antilogar
size 21 . 2. That table has two copies of the basic antilog table. It accom
indices up to size 2f - 2 avoiding the slower modulo calculus of the forn
f = 8,16 both tables may fit also into the L1 or L2 cache of current pr
(not al for f = 16). We aso check for the specia case of one of the ¢
being equal to 0. All together, we obtain the following simple C-pseudo-

GFEl ement nul t (GFEl enment | eft, GFEl ement right) |
if(left==0]|right == 0) return O;
return antilog[log[left]+log[right]];}

In terms of Assembly instructions, the typical execution costs of the boc
sub-program are two comparisons, four additions (three for table-look-u
memory fetches and the return statement.

4 Algegraic Signatures

4.1 Basic Properties

We call apageastring of | symbols p;;i =0,...1 — 1. Inour case, the sy
are bytes or two-byte words. The symbols are elements of a Galois fielc
with f =8or f = 16. We assumethat | < 2f — 1.

Let & = (ou,...0n) beavector of different non-zero elements of the
cal a the n-symbol signature base or simply base. The n-symbol sigr
P based on & is the vector sig (P) = (S804 (P),Si100, (P), - - -, Si00, (P)
for each o we set sigy(P) = 2!;3 piol. We call each coordinate of sig
component signature.

We have not compl etely investigated what choice of the coordinatesis
for other applications. We primarily use the base & = (o, o?, o3, ... o) W
2" — 1 and primitive o. and write Sig,, n instead of s?ga The collision pr
of sig,  isat best 2" Thisis probably insufficient for n = 1.

We are aso interested in the signature sigéf?1 = sigy with & = (o, ot
...a?"2)  where the base coordinates are all primitive.

The basic new property of sig,, , is that any change of up to n symbo
P changesthe signaturefor sure. Thisisour primary concernin this schen
formally we stay this property as follows.

Proposition 1 Provided the pagelengthl is| < ord(o)) =27 —1, Sigyn ¢
any change of up to n symbols per page.



8 Proceedingsin Informatics

Proof: As o isprimitiveand our GFis GF(2") we have ord(a) = 27 — 1.
that the file symbols at locations iy, io,... in P have been changed, but
signatures of the original and the altered file are the same. Cdl d, thed
between the respective symbolsin positioni — v. Thedifference of the co
signaturesis then:

no n . n :
Z (ledv == 0 2 OCZ'IVdV - O e Z (xn'lvdv - O.
v=1

v=1 v=1

The d, values are the solutions of a homogeneouslinear system

a1 o2 a3 o4 . ain di
(ail)z (aig)z (aig)z (O(i4)2 (O(i”)z d
()3 (a2)? (ai2)3 (o) ... (a)? d | _
(OLil)4 (O(i2)4 (OLi3)4 (O(i4)4 (O(i”)4 ’ dy -
@ (@2 (@) (@ @ )\ g

The coefficientsin the first row are all different, since the exponentsi, <
The matrix is of Vandermonde type, hence invertible. The vector of dif
(dy,dz...dn)t isthusthe zero vector. This contradicts our assumption. Th
detects any up to n-symbol change. CQFD

Notice that Prop. 1 trivially holds for sigff}] with n < 2. sig,, , has
possible behavior of for changeslimited to n symbols. An application can
possibly change up to | > n symbols. We now prove that sig, , still ext
low collision probability typically expected from a signature schema.

Proposition 2 Assuming a page length | < ord(ot) and every possible p
tent equally likely, the signatures sig,, ,(P1) and sig,, ,(P2) of two differe
Py and P, collide (coincide) with a probability of 2-"f.

Proof: The n-symbol signature is a linear mapping between the vecto
GF(2")! and GF(2")". This mapping is an epimorphism, i.e., every els
GF(2")" isthe signature of some page, an element of GF(2")'. Consider
0, which maps every page with al but the first n elements equal to ze
signature. Thus, ¢ : GF(2")n— GF(2f)1, (x1,,xn) — Sig, 5((Xa, ..., XN,
and:

o o2 o3 ot o
o2 (OLZ)Z ((13)2 ((14)2 (Otn)z
3 2\3 3\3 4\3 m3
O((X1,X2,...%n)) = 34 232;4 23334 84%4 Ezn§4
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The matrix is again of Vandermondetype, and hence invertible. Thisimy
every possible vector in GF(27)" is the signature of a page with all but
n symbols equal to zero, and of only one such page. Consider now an
vector §in GF(27)". Each page of form (0,...0,Xn;1,Xn12,...X ) has &
tor ¥ in GF(27)" as its signature. For any § and T there is then exactly
(X1,..-%n,0,0,...0) hasthereforesignatures. Thus, the number of pagest
signatureSisthat of all pagesof form (0,...0,Xnt1,Xn+2,...% ). Therear
such pages. There are furthermore 2! pages in total. A random choic
pages | eads thus to the same signature § with probability 2 71— /27l — 2
suming that all pages are equally likely to be selected, our proposition
CQFD.

Notice that Proposition 2 also characterizessigff?, forn< 2. Next, 0
tures are called algebraic and claim at least by name some algebraic pr
Hereis one motivating property of sig,, ,. Its gains practical importancef
subject to very localized and small changes. This case is typical in d:
where attributes have typically rather few symbols. We show that one n
update the sig,, ,, signature from the changed symbols and the before s
This can clearly speed up the calculation of signatures over acompletere
tion asis necessary for SHA1. Formally:

Proposition 3 Let us change page P = (po, p1, - -- pi—1 to page P’ whe
place the symbols starting in position r and ending with position s— 1
String dr, Gr+1, - - - Os—1. Wecall thestring A = (8¢, 01, . ..,8sr—1) With §;

Or+1 the A string. Then for each o in our base @ we have

Sig(x(P/) = Sig(x(P) + (erig(x(A)

Proof: The difference between the signaturesis sig,, (P') — sig, (P) = ¥
pof =a (S —p)el ") = of (TP 8irol ") = ol By tavar =
CQFD.

We finish the section with a proof of the practicality of thesi g&z) sche
context of the popular switch (cut / paste) operation. Prop. 1 shows sure ¢
for any switch of length < n/2. In many applications such as text editing
ing larger pieces of text are common. Prop. 2 does not cover this case.
seek to determine and minimize the collision probability in that context
The base & = (o, 0, a* ... a2") has coordinates of largest possible orde
unlike the base (., a2, 03,...a"). Intuitively therefore, sigl? appears p
to sig,, and the following proposition confirms this in the case of cut &
operations.

Proposition 4 Assume an arbitrary page P of length > 2n and three ind
t of appropriate sizes, Figure 1. Assume a base al pha whose coordinates
order larger than the length of the page. Cut astring T of lengtht beginr
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Figure 1: lllustration of the cut and paste operation.

position r and move it to position sin P. Assuming any T to be equally li
probability that sig; (P) changesis2"f.

Proof: Either T or the rest of the page contain at least n symbols, we
the latter, the former being analogous. Without loss of generality, we &
forward move of T within the file from position r to positions. A backwe
just undoes this operation and thus has the same effect on the signatur
definesthe namefor the regions of the block and makes a spurious case di:
depending on whether r +t < s or not. For any coordinate o in the t
signature of the " before” page (the top scheme for both situations) is

sigy () = sig,, + a'sigy (T) + o "'sig, (B) + 0°"sig, (C).
The after page signatureis

sig, (P"™) = sig,, + o' sig,, (B) + 0°sig, (T) + 0°'sig,, (C).
The difference of the two signaturesis

Sigoc(PneN)_Sigoc(POId) = O(rSigO((T)—i—OCrHSigO((B)—FOLrSigO((B)—FO
= (o +0%)sigy(T) + (o +a)sig, (B)
o (14 0%)sigy(T) + (1+ o')sigy(B)) -

This expression is zero only if the right hand side, or the following exj
where we usey; as an abbreviation, is zero:

(1+0)(1+0f) sigy, (T) +sigy, (B) =
|B—1 n—

1 n—1
(L+a)(L+ol) sg, (T)+ Y, bod 3 bye =y + 3 byor!
v=n v=0 v=0

We now fix the whol e situation with the exception of the first n symbolsi
changein signaturesis

n—1 n—1 n—1 n—1
<Y0+ D ogb, v+ Y, agby,.. ) = (Yo.¥1,---)+ (Z ogby, Y, ot
v=0 v=0 v=0 v=0
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whichis zeroif and only if

n-1 n—1
(Yo,Y1,---) = <Z ogby, D oqbv,...>
v v=0

=0

Theleft hand sideisalinear mappinginthe (bg, by, ...), which hasamati
invertible because it has a Vandermonde type determinant. Therefore, the
only one combination of (bg,bs,...bs_1) that is mapped by the mapping
right hand vector. This combination will be attained by a randomly picke
probability 2-"f. CQFD

At this stage of our research, the choice of sigff}1 appears only as a
between smaller probability of collision for possibly frequent updates (
here), and the zero probability of collision for updates up to any n symt
are able only to conjecture that there is a o in GF(28) or GF(216) f

Propositions 1 and 2 holds for sig&z}1 with n > 2. We did not pursue tt
tigation further. For our needs, n = 2 for GF(216) was sufficient (Section

sigff)z = sig,, » the properties of both schemes coincide anyway.

4.2 Compound Algebraic Signatures

Our signature schemes keep the property of sure detection of n-symbol ¢
long as the page size in symbols is at most 2F — 2. For f = 16, the lim
page size is amost 128 KB. Such granularity suffice for our purpose. (
have many pagesin an SDDS bucket that can reach, e.g., 256 MB for SDC
The collections of the signatures in the bucket may be seen as a vector.
it compound signature (of the bucket). More generally, we qualify a cc
signature of m pages, as m-fold. The the signature map of Section 2.1 imj
acompound signature.

The practical interest of the compound signatures stretches beyond ¢
vating cases. We may usefully apply the concept as an dternativeto asig
an area A not exceeding the limit of ord(c.) — 1. To use an m-fold signatu
for instance, one may divide A into equally sized pages each provided wit
We locate then for sure and with granularity of I /many changeof upton
with a priori unknown location (hence Proposition 3 does not apply). T
with respect to sig,, ,(A), i.e., Sig,, , over the entire A with granularity t
is mainly the about m times larger storage overhead. In practice, one ca
for mleading to a reasonable compromise. Notice that a yet alternative cl
the mtimes larger overhead if acceptable, isto enhance the sure change
resolution to mn symbols anywherein A, using sig, ,n(A).

For larger m, we can exploit the algebraic properties of the m-fold <
scheme by implementing signature maps as trees to speed up the sear
changed sig,, ,- As we show below, with our schemes, we may algef
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i.e., without reexamining the pages themselves compute the higher-lev
tures (unlike for more traditiona signature schemes we are aware of). |f
changes, we may update the higher level once again only algebraicaly. /
capabilities of compound signatures can be of obvious interest to our Sl
backup application.

The following proposition proves the algebraic properties we discu:
area partitioned into two pages. Those can be furthermore of different si:
is sometimesauseful capability aswell, e.g., when A startswith arel ative
index of the datathat follow in A. It generalizestrivially to any larger m.
pages of different sizes aswell.

Proposition 5 Consider two pages P1 and P, of length | and m, | +m <
concatenated into a page (area) P1|P.. Then sig,, , of the concatenated |
be calculated from the component pages by the formulae

Sigoci (P1|P2) = Sigoci (Pl) + (X”Sigai (PZ)'
Proof Assumethat Py =s1,S,...5 andthat P, =§,1,542,...S+m- The

I+m

sigg(PLIP2) = ZSVBV ZS;BV ZS,BV ZSVBWB'ZSM

v=I+1 v= v=

=sigg(P1) +p' - sigg(P

for any {8 in the GF. CQFD Proposition 5 applies to both sig,, , and si
gether, all propositions we have formulated prove the potential of our <
schemes. They have further algebraic properties we are currently investic

5 Experimental Implementation

5.1 CalculusTuning

We can tune the signature calculus. First, we can interpret the page syn
rectly as logarithms. This saves a table look-up. The logarithms range
to 2f — 2 (inclusively) with the additional value for log(0). One can set
to 2f — 1. Next, the signature calculations form the product with o/'.
hasi as the logarithm. One does not need to look this value up neither.

lowing pseudo-code for sig,, ; applies these properties. It uses as param
address of an array representing the bucket and the size of the bucket.
stant TWO_TO THE_Fis2f. The type GFElement is an alias for the ap)

integer type.

GFEl ement  si gnat ure( GFEl enent *page, int pagelLen
GFEl ement returnVal ue = 0;
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for(int i=0; i< pageLength; i++)
i f(page[i]!=TWD TO THE F-1)
returnValue "= antilog[i+page[i]];
return returnVal ue;

}

The applicationto sig,, , iseasy. In our file backup application, the bucke
contains several pages so we typically calculate the compound signature
this calculus, we should consider the best use of the processor caches, i.e
L2 caches on our Pentium machines. It seems advantageous to exploit t
lines on the log table. Then, it may be gainful to first loop upon the cal
sig,, for all the pages, then move to sig,2 and so on. Our experiments c
thisintuition.

5.2 Experimental Performance

We have implemented the motivating applications with the sig, ; scherr
experimental analysis. The testbed configuration consisted from 1.8 G
tium P4 nodes and from 700 Mhz Pentium P3 nodes over a 100 Mbs E
One implementation concerned the signature cal culus schemes alone wi
lated data. The experiments examined variants of the sig,, , calculus wit
to implementation issues and some differences with respect to the basic

We have also experimented the sig&z}1 whose calculation time turned out
same. Finally, we have ported the fastest algorithm of sig,, ,, calculus t¢
2000. In both cases, we have divided the bucket into the pages of size 16
a 4-byte signature per page. This choice appears to be a reasonable corr
between the signature size, hence its calculation time, and the overall
probability of order 232, i.e. over 4-10~°. For record updates, we use
signature size, but the record size is 100 bytes. If we had used SHA-1, 1
head would be 20 bytes per page or record, [20]. Records had about 100
our experiments.

Internally, the bucket in SDDS-2000 has a RAM index as it is structi
a RAM B-tree. The index is small, afew KB at largest. Bucket size p
not make sense there. We set up for the page size of 128 B for the inde
for the record updates, we set up for the signature calculus on-the-fly ol
seemed the most flexible choice, but we could alternatively store the sig
each record, avoiding its calculation. The actual computation took place
the updates. Inserts were not affected.

The analysis of the experiments with the actual SDDS-2000 implen
is presented full in [19]. The main results are as follows. The stand-alor
iments showed, somehow surprisingly, a large variation of the calculat
depending on the data symbols. The reason seemed to be the influenc
caches L1 and L2. For a given page size, the calculus time was linear w
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Sig,,n Used. The actual calculus times of sig,, , as actually put into SDI
was of 20-30 ms per 1 MB of RAM bucket, manipulated as a mapped
SHA-1, our tests showed about 50-60 ms. The sig,, , calculation time
as wished in the order of dozens of microseconds for the index page or «
This timing was linear with the bucket or record size, and, a'so somel
prisingly, rather stable regardless of the algebraic signature scheme tes
calculus time was smaller for alarger page: 64 KB versus 16 KB. It is|
due to the better cache use. The actual transfer time of 1 Mbyte of RA
disk is about 300 ms. Thus the backup using our signature scheme off
expected gains. Likewise, our signature based record update managemer
apractical solution aswell.

For both page sizes, calculation in GF(216) was faster than in GF(;
despitethefact that thelogarithm table of the latter could entirely enter the
cache of each of our machines, accel erating thusthe calculus. Theformer
used in turn more effectively the 4B words. Being faster, GF(216) was
choice for SDDS-2000.

6 Conclusion

Our schemes possess properties novel to signature schemes, namely
detection of limited changes of parameterized size, and of algebraic of
over the signatures themselves. Together with the high probability of det
any change, including switches, small overhead, and fast calculus, our &
proved itself to be useful for our motivating SDDS needs of bucket back
record updates. The experimental fine-tuning of the implementation of tt
ture calculus allowed us finally to successfully add the sig?x’n scheme t
2000 system.

Among future research directions, one concerns the applications of |
braic properties of the schemes. One direction currently investigated isth
text string parallel search (scan) in the non-key fields of records at SSDS
While the need is classical and many algorithms are widely used for ye
Boyer-Moore or Knuth, the algebraic signatures lead to a new approacl
teresting feature is that the client can send to each server only the few-k
signature and the length of the string to search, instead of the entire str
haps long, hence costly to transmit, especially if the SDDS client shoul
to many servers. The server then compares only the incoming signature
of the actually examined string within the searched record. If the matc
successful, and we should move forward in the record, typically by one
the signature of the new string to examine is algebraically recalculated
previousone. The calculus usesthe propertiesdiscussed in Section4.1. T
is much faster than if one had to recalculate it entirely. This would be th
any other signature scheme we are aware of (making any such attempt u
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practice).

Beyond, one should determine further algebraic properties of the «
The conjecture of sure detection of changes aso by sigé‘n scheme rema
proved or disproved. Variants of the basic schemes should be studied. Tt
signature trees for computing the compound signatures and explore the <
maps is an open research area. Finally, we did not explore the Prefetct
providing perhaps further savings to the calculus time through better L1
cache management.

Beyond these goal's, one can apply our schemes to the automatic file
in presence of several files sharing an SDDS server whose RAM becan
ficient for all the files simultaneously, [16]. Next, the signatures appea
useful tool for the cache management at the SDDS client, allowing to
cache and server data synchronized. Thereis also an interesting relatior
tween the algebraic signatures and the Reed-Salomon parity calculus wi
the high-availability SDDS LH* RS scheme, [14]. GFs are the common b
it appears that the signatures may help preserving the mutual consistenc
and parity recordsin presence of lost messages.

Our techniques should help aso other database needs. Especialy,
pear attractive for a RAM-DBS that typically needs the RAM data im
the disk as well. Very large Gbyte RAMs are now widely available, a
enhanced performance of such DBSsincreasingly attractive with respect
of traditional disk-based DBSs, [21]. Likewise, our signature based recor
calculus at the SDDS client, should provide similar advantagesfor aclie
based DBS architecturein genera . Interesting possibilities appear furthe
transactional concurrency control, beyond the avoidance of the lost upda
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